
Applying deep-learning techniques
to detect freezing of gait episodes

in Parkinson’s disease patients

Facultat d’informàtica de Barcelona Facultat de matemàtiques Escola tècnica superior d’enginyeria

Julià Camps Sereix
julia.camps.sereix@est.fib.upc.edu

Dr Albert Samà1 and Dr Mario Mart́ın2

1Technical Research Centre for Dependency Care and Autonomous Living, CETPD,
Universitat Politècnica de Catalunya, Barcelona Tech., Rambla de l’Exposició 59-69,

Vilanova i la Geltrú 08800, Spain,

2Knowledge Engineering and Machine Learning Group, Universitat Politècnica de

Catalunya, Barcelona Tech., C/ Jordi Girona 1-3, Barcelona, 08034, Spain,

A thesis submitted for the

Master in Artificial Intelligence

June 30, 2017

Acknowledgements

Part of this project has been performed within the framework of the Freez-

ing in Parkinson’s Disease: Improving Quality of Life with an Automatic

Control System (MASPARK) [3] project which is funded by La Fundació

La Marató de TV3 20140431. This work also forms part of the frame-

work of the FP7 Personal Health Device for the Remote and Autonomous

Management of Parkinsons Disease (REMPARK) [7] project ICT-287677,

which is funded by the European Community. The author, thus, would

like to acknowledge the contributions of the members from MASPARK

and REMPARK consortium, and to his colleagues from the Technical Re-

search Centre for Dependency Care and Autonomous Living for sharing

their facilities and resources.

Abstract

Freezing of gait (FOG) is one of the most incapacitating symptoms among

the motor alterations of Parkinson’s disease (PD). Manifesting FOG episodes

reduces the quality of life of patients and their autonomy to perform daily

living activities, while it may provoke falls. Accurate ambulatory FOG

assessment would enable non-pharmacologic support based on cues and

would provide relevant information to neurologists on the disease evolu-

tion.

This master thesis presents a method for FOG detection based on deep

learning and signal processing techniques. This thesis is, to the best of the

author’s knowledge, the first study to address FOG detection with deep

learning strategies. The evaluation of the model has been done based on

the data from 21 PD patients who manifested FOG. The data employed

throughout this study were recorded using an inertial measurement unit

placed at the left side of the patients’ waist. These data were composed

of 3 tri-axial signals corresponding to measurements from accelerometer,

gyroscope and magnetometer.

The results obtained by our approach in detecting FOG outperform the

state-of-the-art ones, achieving performances higher than 90% for the ge-

ometric mean between test sensitivity and test specificity. Furthermore,

two recurrent extensions of our original approach were implemented and

compared to assess its temporal representation capacity.

This work also reproduces four feature extraction methodologies from

those composing the state-of-the-art for comparing them to our approaches.

Concretely, suitable machine learning algorithms for binary classification

tasks were trained with these features and later compared to the deep

learning methods. From this comparison, it was possible to reaffirm that

the presented approaches are, at the moment, the best strategy for auto-

matic FOG detection.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 3

1.3 Objectives . 7

1.4 Framework . 8

1.5 Related work . 9

2 Deep learning 13

2.1 Convolutional neural networks . 13

2.1.1 ConvNets for image recognition 13

2.1.2 ConvNets for sequence data 15

2.1.3 Application of ConvNets to biomedical data 16

2.2 Recurrent neural networks . 16

2.2.1 Application of RNNs to biomedical data 17

2.2.2 Application of RNNs to human activity recognition using wear-

able sensors . 18

2.3 Regularization for DL models . 18

2.3.1 Parameter norm penalties . 19

2.3.2 Early stopping . 20

2.3.3 Data augmentation . 21

2.3.4 Dropout . 21

2.3.5 Zoneout . 21

2.4 Training DL models . 21

2.5 Architecture notation . 23

3 Data collection and processing 24

3.1 Data collection . 24

3.2 Data overview . 27

i

3.3 Offline data cleansing and signal processing 29

3.3.1 Data cleansing . 29

3.3.2 Signal processing . 30

3.3.3 Patient data balancing . 30

3.4 Data representation . 31

3.4.1 Windowing . 31

3.4.2 Spectral window stacking . 33

3.5 Data augmentation . 34

4 Architecture and training parameters 39

4.1 1D-ConvNet . 39

4.1.1 Convolutional layers . 40

4.1.2 Hidden dense layers . 40

4.1.3 Output layer . 41

4.2 1D-ConvLSTM . 41

4.3 1D-ConvGRU . 42

4.4 Structures comparison . 43

5 Experiments 46

5.1 Implementation and technologies . 46

5.1.1 Machines’ specs . 46

5.1.2 Programming tools . 47

5.2 DL training and evaluation settings 48

5.2.1 Weights initialisation . 48

5.2.2 Activations . 48

5.2.3 Error loss . 48

5.2.4 Optimiser . 49

5.2.5 Minibatch training . 49

5.2.6 Regularization . 50

5.2.7 Training data feeding strategies 50

5.2.8 Evaluation data feeding strategies 52

5.3 Evaluation . 54

5.4 Reproduction of the state-of-the-art approaches 55

5.4.1 Data representation and preprocessing for reproducing the ap-

proaches . 55

5.4.2 Implementation of the feature extractions 56

5.5 Shallow ML experiments . 62

ii

5.5.1 Shallow ML algorithms implemented 62

5.5.2 Shallow ML training and evaluation 68

6 Results and discussion 70

6.1 Comparison among DL approaches 70

6.1.1 Data representation . 70

6.1.2 1D-ConvNet . 73

6.1.3 1D-ConvLSTM . 73

6.1.4 1D-ConvGRU . 74

6.1.5 Discussion . 75

6.2 Comparison among shallow ML . 76

6.3 Comparison between DL and shallow ML approaches 79

7 Conclusions 81

Bibliography 83

iii

List of Figures

2.1 Typical ConvNet architecture for 2D image recognition [29]. This fig-

ure illustrates a typical seven-layer ConvNet architecture. Concretely,

the architecture is composed by: I) an input layer, II) a first convolu-

tional layer, III) a first pooling (or subsampling) layer, IV) a second

convolutional layer, V) a second pooling layer, VI) a dense layer and

VII) an output dense layer. 14

2.2 Max pooling illustration [29]. Max pooling operator always takes two

arguments. Its first one, 2x2 in this case, determines the shape of the

rectangle in the image to be operated by the pooling operator each

time. Whereas the second parameter is named ‘stride’, which was set

to 2 in this example, referrers to the number of values to skip before

applying the pooling operator again. This figure, hence, illustrates an

example case of applying ‘2x2 max pooling with stride 2’. 15

2.3 Figures 2.3a and 2.3b illustrate an LSTM and a GRU blocks, respec-

tively. In Figure 2.3a i, f and o are the input, forget and output gates,

respectively. c and c̃ denote the memory cell and the new memory cell

content. While in Figure 2.3b r and z are the reset and update gates,

and h and h̃ are the activation and the candidate activation. These

figures were extracted from [27]. 17

2.4 Regularization example [29]. This figure contains three main elements:

I) the red dots representing the train data of a regression problem;

II) a blue line representing a solution without regularization for the

regression problem; and III) a green line describing the same solution,

but with L2 weight regularization. 19

3.1 The data collector IMU and its location on patients’ body (i.e. left

side of their waist) [31]. 24

iv

3.2 This figure is illustrates two slices of the data composing the REM-

PARK’s database. On the left side, the figure illustrates a part of the

accelerometer signals data with its associated activity and posture la-

bel, while on the right, a different part of accelerometer data is shown

with its FOG labels associated [124]. 26

3.3 Preprocessed file being windowed. 33

3.4 Spectral window stacking process diagram. 34

4.1 Diagram of the 1D-ConvNet’s architecture. 39

4.2 Diagram of the receptive fields structure of a 4-layer ConvNet with

kernels of size 3. In this figure, all circles represent cells of a network

with sparse connectivity, which is only connected to three output cells

of the next layer. Therefore, as can be observed, the input layer being

larger than 3, this can still be ‘seen’ by one cell, although not in the

first layer. Concretely, it illustrates the effect of depth in ConvNets’

connectivity structures, which permits to extract large and abstract

patterns. 40

4.3 Diagram of the 1D-ConvLSTM’s architecture. 42

4.4 Diagram of the 1D-ConvGRU’s architecture. 43

v

List of Tables

3.1 Training and test data properties. Columns naming description: ‘#

patients’ → number of patients in the set; ‘# Instances’ → number

of data instances recorded by the IMU; ‘FOG %’ → percentage of

FOG instances (i.e. those with label equals 1) with respect to the ‘#

Instances’ value; ‘Undefined %’ → percentage of undefined instances

(i.e. those with label equals 0) with respect to the ‘# Instances’ value. 27

3.2 Training data properties per patient. Columns naming description:

‘Patient ID’ → patient reference employed throughout this document;

‘# Instances’→ number of data instances recorded by the IMU; ‘FOG

%’ → percentage of FOG instances with respect to the ‘# Instances’

value; ‘Undefined %’→ percentage of undefined instances with respect

to the ‘# Instances’ value; and ‘Relevance %’ → proportion of defined

(i.e. not undefined) instances of this patient with respect to the overall

defined instances in the patients group (i.e. train or test) being analysed. 28

3.3 Testing data properties per patient. Columns naming description: ‘Pa-

tient ID’ → patient reference employed throughout this document; ‘#

Instances’ → number of data instances recorded by the IMU; ‘FOG

%’ → percentage of FOG instances with respect to the ‘# Instances’

value; ‘Undefined %’→ percentage of undefined instances with respect

to the ‘# Instances’ value; and ‘Relevance %’ → proportion of defined

instances of this patient with respect to the overall defined instances

in the patients group being analysed. 29

vi

3.4 Data properties per dataset and patient in it. Columns naming de-

scription: ‘# Instances’ → number of data instances recorded by the

IMU; ‘FOG %’→ percentage of FOG instances with respect to the ‘#

Instances’ value; ‘Undefined %’ → percentage of undefined instances

with respect to the ‘# Instances’ value; and ‘Relevance %’ → pro-

portion of defined instances of this patient with respect to the overall

defined instances in the patients group being analysed. 37

3.5 Data properties per patient. Columns naming description: ‘Train’

→ Training-train dataset; ‘Validation’ → Training-validation dataset;

‘Test’ → Testing dataset; ‘strategy’ → implementation of the feeding

strategy for DL models, which can be feed-forward or recurrent; ‘#

samples’ → number samples (i.e. spectral windows stacked) available

in the dataset; ‘FOG %’ → percentage of FOG samples with respect

to the ‘# samples’ value. 38

4.1 Approaches structures and parameters. Columns naming description:

‘1D-ConvNet’, ‘1D-ConvLSTM’ or ‘1D-ConvGRU’→ approach to which

the information in the columns under this one belongs; ‘Layer’ →
layer’s number, according to Figure 4.1, Figure 4.3 and Figure 4.4 for

the 1D-ConvNet, the 1D-ConvLSTM and the 1D-ConvGRU, respec-

tively; ‘Properties’ → layers’ properties affecting the number of pa-

rameters; ‘# Param’ → number of parameters in the ‘Layer’-th layer;

‘cn’ → layer’s number of input channels in Equation (4.4) and Equa-

tion (4.6); ‘kn’ → number of kernels in Equation (4.4); ‘ks’ → kernels’

size in Equation (4.4); ‘kb’ → number of kernels’ biases in Equation

(4.4); ‘is’ → layer’s input size in Equation (4.5); ‘nn’ → layer’s num-

ber of neurones in Equation (4.5); ‘nb’ → number of neurones’ biases

in Equation (4.5); ‘an’ → number of functions in a layer’s memory

block in Equation (4.6); ‘oc’ → layer’s output number of channels in

Equation (4.6); and row ‘Total’ → total number of parameters of the

approach. 45

vii

5.1 Tree bagging configurations. Columns naming description: ‘# trees’

→ number of decision trees forming the ensemble method; and ‘tree

type’→ properties of the trees implemented. The values in the column

‘tree type’ may adopt one of the following values: ‘tree’ → traditional

decision tree; ‘min x’ → tree composed by leafs with minimum size x;

or ‘max x’ → tree of maximum depth x, note that ‘max 1’ will be the

decision stump. Additionally, next to the ‘min x’ or ‘max x’ values,

there might appear a percentage % symbol, which indicates that the

value of x is a percentage over the training data. 64

5.2 AdaBoost configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; ‘tree type’ →
properties of the trees implemented; and ‘learning rate’→ the learning

rate for training the algorithm, note that values lower than 1 may

have an shrinkage effect. The values in the column ‘tree type’ may

adopt one of the following values: ‘tree’ → traditional decision tree;

‘min x’ → tree composed by leafs with minimum size x; or ‘max x’

→ tree of maximum depth x, note that ‘max 1’ will be the decision

stump. Additionally, next to the ‘min x’ or ‘max x’ values, there might

appear a percentage % symbol, which indicates that the value of x is

a percentage over the training data. 65

5.3 LogitBoost configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; ‘tree type’ →
properties of the trees implemented; and ‘learning rate’→ the learning

rate for training the algorithm. The values in the column ‘tree type’

may adopt one of the following values: ‘tree’ → traditional decision

tree; ‘min x’→ tree composed by leafs with minimum size x; or ‘max x’

→ tree of maximum depth x, note that ‘max 1’ will be the decision

stump. Additionally, next to the ‘min x’ or ‘max x’ values, there might

appear a percentage % symbol, which indicates that the value of x is

a percentage over the training data. 66

viii

5.4 RUSBoost configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; ‘tree type’ →
properties of the trees implemented; and ‘learning rate’→ the learning

rate for training the algorithm. The values in the column ‘tree type’

may adopt one of the following values: ‘tree’ → traditional decision

tree; ‘min x’→ tree composed by leafs with minimum size x; or ‘max x’

→ tree of maximum depth x, note that ‘max 1’ will be the decision

stump. Additionally, next to the ‘min x’ or ‘max x’ values, there might

appear a percentage % symbol, which indicates that the value of x is

a percentage over the training data. 67

5.5 RobustBoost configurations. Columns naming description: ‘# trees’

→ number of decision trees forming the ensemble method; ‘tree type’

→ properties of the trees implemented; and ‘error goal’ → the error

tolerance percentage by which the algorithm will stop training and,

thus, end with larger confidence margins. The values in the column

‘tree type’ may adopt one of the following values: ‘tree’ → traditional

decision tree; ‘min x’ → tree composed by leafs with minimum size x;

or ‘max x’ → tree of maximum depth x, note that ‘max 1’ will be the

decision stump. Additionally, next to the ‘min x’ or ‘max x’ values,

there might appear a percentage % symbol, which indicates that the

value of x is a percentage over the training data. 68

5.6 SVM-RBF configurations. Columns naming description: ‘# SV’ →
number of support vectors composing the model. 69

6.1 Top-3 training models’ results from the representation strategies an-

nounced for comparison in Subsection 6.1.1, sorted according to the

stopping criteria described in Subsection 5.2.6. 71

6.2 Top training models’ test results from the representation strategies

announced for comparison in Subsection 6.1.1. 72

6.3 1D-ConvNet top-5 models’ train performance. Columns naming de-

scription: ‘GM’ → GM of the test sensitivity and test specificity. . . . 73

6.4 1D-ConvNet top-5 models’ test performance. Columns naming de-

scription: ‘GM’ → GM of the test sensitivity and test specificity. . . . 74

6.5 1D-ConvLSTM top-5 models’ train performance. Columns naming

description: ‘GM’ → GM of the test sensitivity and test specificity. . 74

ix

6.6 1D-ConvLSTM top-5 models’ test error. Columns naming description:

‘GM’ → GM of the test sensitivity and test specificity. 75

6.7 1D-ConvGRU top-5 models’ train performance. Columns naming de-

scription: ‘GM’ → GM of the test sensitivity and test specificity. . . . 75

6.8 1D-ConvGRU top-5 models’ test error. Columns naming description:

‘GM’ → GM of the test sensitivity and test specificity. 75

6.9 DL approaches results. Columns naming description: ‘# Param’ →
number of model’s parameters as shown in Table 4.1; ‘# Epoch’ →
number of epochs that lasted the model’s training process; and ‘GM’

→ GM of the test sensitivity and test specificity. 76

6.10 Comparative table of the ML approaches’ test results. Columns nam-

ing description: ‘GM’ → GM of the test sensitivity and test specificity. 77

6.11 Experiments’ results comparison. Columns naming description: ‘GM’

→ GM of the test sensitivity and test specificity. 78

6.12 Experiments’ results comparison. Columns naming description: ‘GM’

→ GM of the test sensitivity and test specificity. 80

x

List of Algorithms

1 Data preprocessing . 32

2 Feed-forward feeding strategy . 51

3 Recurrent feeding strategy . 52

4 Evaluation feeding strategy . 53

xi

Chapter 1

Introduction

1.1 Motivation

Parkinson’s disease (PD) is a long-term progressive neurological condition, resulting

from the degeneration of dopamine-producing neurones. PD is the second most com-

mon neurodegenerative disorder after Alzheimer’s disease. The prevalence of PD is

approximately of 1% among people of age above 65 [135, 99, 88, 32, 92, 100, 101].

Although, there are indicators that relate the disease with genetic factors, the cause

of PD is still unknown [118, 64]. There is no cure for PD, however, its average life

expectancy is about 12 years, after being diagnosed [118, 64, 131].

Dopamine is a neurotransmitter involved in movement control [65, 61, 11]. A

deficit of neurones responsible for producing this neurotransmitter typifies PD’s pathol-

ogy. As a result, PD patients manifest several motor and non-motor symptoms,

such as Parkinsonian tremors. PD’s tremor is, however, one of the symptoms with

lower impact on patients’ quality of life (QOL). Concretely, this symptom only af-

fects patients’ limbs at rest and disappears during involuntary movements. On the

other hand, bradykinesia (slowness of movements), muscles stiffness, postural alter-

ation and freezing of gait (FOG) symptoms manifestations may difficult the perfor-

mance of activities of daily living (ADL), and, thus, reduce the patients’ autonomy

[125, 118, 100, 80, 61, 76].

Current clinical methods to assess PD’s patients’ symptoms are commonly based

on in-lab examinations, symptoms questionnaires and symptoms diaries. These meth-

ods, as described in Section 1.2, provide only partial information regarding the pa-

tients’ condition.

Some aspects of PD, such as its genetic representation towards diagnosis and

complex symptoms, such as FOG, are still poorly understood [45, 50]. The disease

is diagnosed in practice by observation of indicative known symptoms plus having a

1

positive response to the current medication therapies [61, 64]. On the other hand, as

described in Section 1.2, the assessment of FOG is mainly performed with freezing of

gait questionnaire (FOG-Q) and in-lab periodic tests [62, 47, 63, 108].

Assigning human-specialist assistants to control all PD patients is infeasible due

to its prevalence and to the difficult social acceptance of this solution. Therefore,

alternative non-intrusive techniques, such as wearable technologies [75], have recently

gained the attention of the research community towards solving these problems by

performing an automatic quantitative assessment of the disease’s signs.

Especially, automatic FOG detection may permit to increase the understanding of

this symptom, which may lead to discovering effective treatments for it. Furthermore,

performing this detection in a real-time manner [79], would enable to provide online

support to patients through rhythmic auditory cues, which may significantly enhance

the patients’ autonomy during their ADL [15, 148].

Wearable sensors are increasingly becoming a common practice for detecting PD’s

motor symptoms in the research community due to the increase of computation power

in wearable sensing devices and the adoption of these technologies for biomedical re-

search [81, 16, 75]. The state-of-the-art on algorithms for automatic FOG detection

are shallow machine learning (ML) algorithms applied to signals acquired from iner-

tial wearable sensors [79, 141, 149, 31, 12, 77, 110]. The state-of-the-art performance

for FOG detection is defined by performances about 85% [31, 110] for the geometric

mean (GM) between sensitivity and specificity. However, the complexity in design-

ing handcrafted features and the scarcity of data from PD patients collected under

real-life-like conditions for developing reliable solutions are the major impediments

preventing the research community from mastering the problem.

Feature learning is a set of methods that learns a transformation of raw data

input to a representation that can be exploited by ML methods. Deep learning (DL)

methods are feature learning methods with multiple levels of representation [72]. DL

models can learn feature extractions that can easily handle multimodal data, missing

information and high dimensional feature’s spaces [72, 53]. Thus, when working with

DL methods, the manual feature engineering can be obviated, which is otherwise

necessary for traditional ML methods. Furthermore, DL models can outperform

shallow ML algorithms when enough data to represent the complexity of a target

problem are provided adequately. Concretely, DL models have recently exhibited a

breakthrough in several complex problems, even outperforming humans in complex

tasks such as image classification [59] and playing games [128]. Some other remarkable

applications which are currently possible to implement with DL techniques are: face

2

detection [134], image generation [142], video-frame prediction [37], speech recognition

[90] and audio generation [90] and question answering [146, 54]. In this master thesis,

it is hypothesised that DL methods will improve the state-of-the-art results in FoG

detection through wearable sensors.

1.2 Background

Accurate automatic symptoms detection in PD patients has the potential of pro-

viding relevant indicators about their condition [34], enabling clinicians to maintain

their regimens updated, without the workload overhead of current gold-standard tech-

niques. These features may improve both: the patients’ QOL by objectively adjusting

their treatments, and the clinicians’ efficiency by providing them with relevant and

objective information about the patients’ motor states.

Among PD’s motor symptoms there are few symptoms, such as FOG, which may

manifest even when patients are under the medication’s influence, while most of them,

such as bradykinesia, stiffness and postural alteration, can be effectively treated by

the current medication-based therapies. The severity of these medication-responsive

symptoms can be reduced by increasing the patients’ dopamine concentration [139, 61,

11]. Directly administrating dopamine to PD patients was, however, found useless to

combat the disease due to the protective bloodbrain barrier, which prevents dopamine

from entering the required brain areas [11]. Levodopa (L-DOPA) is a precursor of

dopamine which can overcome this limitation [11]. L-DOPA-based therapies are the

most widely adopted medication treatments in PD [11, 94].

Long-term usage of L-DOPA in PD patients has, however, two major side effects:

motor fluctuations and dyskinesias [120]. Motor fluctuations are transitions between

ON and OFF states, which are described as the presence and absence of PD’s symp-

toms, respectively. These symptomatic motor states are referred as the ON-state

when medication is effective, and, thus, the symptoms have a minimum presence,

and OFF-state when the symptoms regain presence [120]. The transitions between

these motor states are referred as motor fluctuations. Typically, after some years of

being administrated L-DOPA-based therapies, patients start to experience more fre-

quently OFF-states even when having taken their medications. In these cases, motor

fluctuations may occur from three to five times per day [140, 120]. Within the same

period, L-DOPA-induced dyskinesias (choreic movements) may appear.

Monotonic L-DOPA-based therapies are, therefore, insufficient to deal with the

whole life-cycle of the disease [74, 11]. Other non-dopaminergic alternatives, such

3

as apomorphine [98, 39], which aim to increase the dopamine levels by reducing its

destruction in the human body instead of increasing its production rate, have also

been included in PD’s therapies to reduce L-DOPA’s side effects. Dopamine agonists’

proclivity to cause psychotoxicity has, however, limited their adoption as L-DOPA

substitutes for the entire PD’s duration [74, 39].

The course of the disease and medication treatments associated are typically com-

posed of the following stages:

• Pre-L-DOPA: During the first months after the diagnosis, dopamine agonists

or MAO-B inhibitors monotherapies are prescribed to delay the start of the

L-DOPA administration [74, 120].

• L-DOPA ‘honeymoon’ period: Due to PD’s symptoms worsening, dopamine ag-

onists or MAO-B inhibitors monotherapies become insufficient, L-DOPA based

therapies are employed [74]. Due to its long-term usage side effects, L-DOPA-

based therapies are designed to minimise the quantity of L-DOPA adminis-

trated, for example, by combining L-DOPA with peripheral dopa decarboxy-

lase inhibitors, such as carbidopa and benserazide, which increase L-DOPA’s

bioavailability [74, 100, 120]. This stage typically lasts from 2 to 6 years, al-

though the disease experience is variable to each patient.

• L-DOPA with motor fluctuations: Once the side effects from long-term L-DOPA

administration appear, there are several strategies, such as occasional apomor-

phine subcutaneous injections, which may be employed before adopting any of

the final intrusive solutions [107, 89, 119, 114]. Apomorphine is a dopamine

receptor agonist administrated in PD by subcutaneous injections due to its

potential for treating PD’s fluctuations [14, 98]. However, there is no gold

standard in how to adapt the L-DOPA-based therapies in PD once these treat-

ments become less effective. One of the common strategies is to fractionate

the oral L-DOPA doses to reduce the changes in its in-serum levels. However,

other techniques may vary depending on the criteria from the local clinicians

and the patients’ condition, for example, its a common practice to prescribe

apomorphine injections to patients that suffer severe OFF-states, which should

occasionally be used, due to its proclivity to cause psychotoxicity.

• Advanced PD: Advanced stages of the disease tend to present severe disabling

motor and non-motor complications that cannot be effectively managed by pul-

satile L-DOPA-based therapies. Thus, at this time, more complex and invasive

4

techniques such as drug infusion pumps or deep brain stimulation (DBS) are

employed [48, 95, 120, 114, 94].

DBS is a neurological procedure which consists of placing electrodes in the re-

gion of the ventral intermediate nucleus of the thalamus and sending electrical

impulses [95]. These intervention, although it can help to improve the patients’

QOL, has dangerous side effects, including intracranial hemorrhage and infec-

tion [38, 95, 35, 138, 44, 116, 117].

Currently, the main infusion techniques are subcutaneous apomorphine and

intraduodenal L-DOPA [114, 33]. Intraduodenal L-DOPA is the natural con-

tinuation of the carbidopa/L-DOPA oral therapy [119, 84], which increases the

stability of the dopamine levels compared to oral supply. However, in some

cases, patients may become untreatable by L-DOPA-based therapies. Thus,

other drugs, such as apomorphine, have been evaluated to replace L-DOPA

[14, 40, 98, 74, 84]. Subcutaneous apomorphine infusions are still employed as

default treatment in substitution of carbidopa/L-DOPA oral treatment in some

cases that it would be feasible to employ intraduodenal L-DOPA. This tendency

is, however, decreasing due to apomorphine’s proclivity to cause psychotoxicity

and addiction [98, 48, 95, 136, 140, 120, 145, 114, 33, 84], such as the dopamine

dysregulation syndrome [93] .

Although several studies have been undertaken to compare the pros and cons

of these techniques, the selection criteria between these alternatives may differ

depending on the health regulations and medical centre.

Effective PD’s therapies should prevent its progression while abolishing motor and

cognitive handicaps. However, none of the existing therapies meets all these needs

[74]. Therefore, therapies require several adjustments and changes throughout the

course of the disease, which need to be accurate therapy personalisation for each

patient from continuous controls in their state and response to the designed therapy.

In the current clinical practice, most patients are assessed by the neurologist ev-

ery 3 to 6 months [6]. Current clinical practice for controlling and assessing the PD

patients’ states and therapies is time-consuming. Periodical in-lab tests, symptoms’

questionnaires and symptoms’ diaries are some of the gold-standard PD’s regimen

assessment techniques. On the one hand, in-lab tests serve to assess the patients’

movement capabilities from in-lab observations from the neurologists. However, these

tests tend to be insufficient to represent the patients’ daily experiences. Concretely,

5

similar factors than the ones triggering the ‘white coat’ effect [96], such as being un-

der observation and performing the tests in controlled environments, may produce

this lack of generalisation of in-lab tests’ observations. While, on the other hand,

symptoms’ diaries and questionnaires serve to inform the neurologists about the dis-

ease evolution by identifying indicators, such as motor fluctuations, in the patients’

descriptions. Regarding symptoms’ diaries, the patients’ role is to maintain a record

of the symptoms that they experience while their ADL, while in questionnaires they

are required to answer questions about their condition and recent experiences. How-

ever, the reliability of these two written assessment techniques is subject to each

patients’ mental capabilities, which may be affected by other PD’s non-motor symp-

toms, such as dementia. Therefore, only techniques based on continued observation

and evaluation mechanisms can ensure optimal therapy control for all PD patients

[6].

This master thesis focuses on FOG, which is a poorly understood symptom asso-

ciated with PD condition. This symptom is usually manifested in episodes shorter

than 10 seconds (s) [125]. Suffering these episodes may provoke falling accidents when

patients are willing to perform walking related actions [20]. According to Nieuwboer

and Giladi [86], FOG might be defined as an inability to deal with concurrent cog-

nitive, limbic, and motor inputs, causing an interruption of locomotion. Adminis-

trating drugs has proven to diminish most of PD’s symptoms successfully, however,

FOG episodes may manifest regardless on the patient’s medication state [46, 125].

FOG’s frequency is, furthermore, influenced by the patient’s mental state and other

environmental factors, such as walking through narrow spaces or shifting obstacles

[20, 80]. As already mentioned, in-lab observations may differ from the patient’s daily

experiences [96]. Moreover, FOG’s episodic and environment sensitive nature may

even introduce additional bias to the results of these tests, converting FOG assess-

ment into one of the most difficult to accurately assess among PD’s motor symptoms

[47, 48, 125]. The gold-standard strategy to assess FOG is the FOG-Q. The FOG-Q

has proved to provide relevant indicators for the identification and characterisation of

this symptom [47, 87, 49]; however, the informative power of this technique is insuf-

ficient for research purposes towards gaining a better understanding of the symptom

[87]. Many medical research studies have been carried out to discover strategies to

combat this symptom. These studies have proved that techniques such as to induce

an acoustic or visual external rhythm to PD patients improve their walking capacity

while minimising FOG’s incisive frequency [15].

6

1.3 Objectives

Due to all these characteristics, this master thesis aims to present a novel DL-based

approach capable of outperforming the state-of-the-art methods for FOG detection

using inertial wearable sensors data acquired from PD patients at their homes while

performing various ADL. Furthermore, this is, to the best of the author’s knowledge,

the first study to adopt DL models for addressing FOG detection in PD patients.

Several combinations of one-dimensional (1D) convolutional neural networks (Con-

vNets) architectures and data representations will be evaluated and optimised to

achieve this goal.

The temporal representation capacity of our approach is evaluated by comparing

its performance against two extensions which replace the hidden dense (fully con-

nected) layers by recurrent layers. Our hypothesis is that if the 1D-ConvNet properly

exploits the temporal information, none of its recurrent extensions should outperform

our former approach. Note, however, that the only model being properly tuned is the

1D-ConvNet, since its architecture (i.e. the number of layers and neurones per layer)

will be unchanged in the extensions, for simplicity and time constraints.

Concretely, the two recurrent extensions of our approach will be implemented.

Concretely, the 1D-ConvNets models hidden layers are firstly interchanged by long-

short-term-memory (LSTM) [60] layers producing a 1D-convolutional-long-short-term-

memory network (1D-ConvLSTM), and, secondly, by gated-recurrent-unit (GRU) [25,

27] layers, producing a 1D-convolutional-gated-recurrent-unit network (1D-ConvGRU).

These three DL-based approaches will be evaluated on the same data to assess the

temporal representation capacity of the feed-forward approach.

To objectively assess the performances achieved by the DL methods implemented,

these will, moreover, be compared to the current state-of-the-art methodologies for

FOG detection from inertial sensors data in the literature. Within this second com-

parative study, the state-of-the-art feature extraction approaches will be fairly repro-

duced on the same data employed within this master thesis.

Other authors’ feature extraction approaches selected for being reproduced are: I)

the approach presented by Bächlin et al. in 2009 [16], which is hereinafter referred as

the Moore-Bächlin FOG Algorithm (MBFA); II) the approach presented by Mazilu

et al. in 2012 [79], which is an extension of the MBFA; III) the approach presented by

Tripoliti et al. in 2013 [141]; and IV) the approach presented by Rodŕıguez et al. in

2016 [31]. Further details on their work are reviewed in Section 1.5, where the major

7

accomplishments of these studies are commented, and in Chapter 5, which exposes

the details of the reproduction of these feature extraction approaches.

The resulting features from these approaches will be used for training powerful

binary classification ML shallow algorithms, such as tree bagging [22], adaptive boost-

ing (AdaBoost) [42], adaptive logistic regression boosting (LogitBoost) [43], random

undersampling boosting (RUSBoost), robust adaptive boosting (RobustBoost) [41]

and support vector machines (SVMs) [30], by leave-one-patient-out cross-validation

on the overall training data used for the DL approaches. Finally, the resulting mod-

els from the hyperparameters exploration will be retrained on the overall training

data and tested on the testing data selected for the DL methods to produce a fair

comparison between both methodologies.

1.4 Framework

This study was conducted in the Technical Research Centre for Dependency Care and

Autonomous Living (CETpD) [9], a research centre composed by researchers from the

Department of Electronic Engineering and the Department of Automatic Control at

the Universitat Politècnica de Catalunya (UPC).

The CETpD’s researchers have conducted numerous different studies. However,

their expertise areas are the following:

• Designing and implementing wearable devices for human activity recognition

(HAR) for multiple purposes such as fall detection and online PD’s motor symp-

toms monitoring [109, 112, 110].

• Inertial signal data analysis [123], which they perform over the data recorded by

specific wearable devices in numerous areas, such as sports activity monitoring

in professional athletes and HAR from smartphones [106, 85, 105].

• Machine learning applications for pattern detection in time series data [121,

111].

• Medical data analysis and projects, mainly related studies targeting elder people

support systems and PD’s symptoms monitoring [122, 113, 120, 115].

The research centre has a strong cooperation with medical staff of several hospitals,

such as Hospital Sant Antoni Abat [2] in Vilanova i la Geltrú and Centro Médico

Teknon [1] in Barcelona.

8

Data employed in this master thesis were collected within a European project

research project, the Personal Health Device for the Remote and Autonomous Man-

agement of Parkinson’s Disease (REMPARK) project [7], within which its members

generated a great database of PD patients’ inertial signal recordings while perform-

ing ADL. The REMPARK project main aims were the identification of OFF-states

and L-DOPA-induced dyskinesia episodes in PD patients. These data are further

described in Section 3.1.

1.5 Related work

Automatic FOG detection is still an open research issue despite having been widely

addressed by several combinations of devices and algorithms. This section reviews

some of these approaches.

Moore et al. in 2008 [81] made the first attempt to detect FOG automatically.

They presented a novel method for automatic FOG detection in PD patients. The

data for performing their study were composed of inertial signals recorded by micro-

electromechanical systems (MEMS) placed at the left shank of 11 PD patients who

manifested FOG episodes. Their approach consists of a freeze index (FI) threshold,

where FI is defined as the ratio between the power spectral density in the gait freezing

band (FB) (i.e. 3–8 hertz (Hz)) and in the locomotion band (LB) (i.e. 0.5–3 Hz),

which are applied window-wisely over tri-axial accelerometer recorded data, which

is windowed into splits of 6 s. Considering the simplicity of the method, they were

able to achieve highly accurate results. Concretely, they were able to detect 78% of

FOG events correctly employing the same threshold for all patients’ data. Further-

more, calibrating the threshold to each patient improved the method’s performance

to an 89%. However, they perform a weak evaluation on data containing only 46

FOG events, while not reporting the exact evaluation methodology employed. Fur-

thermore, the data acquisition was performed twice per patient, first in OFF-state

(without medication) and later in ON-state (while being under the drug’s influence).

Later in 2009, Bächlin et al. [16] illustrated an extension of the method designed

by Moore et al. [81] referred as MBFA, as mentioned in Section 1.3, which targeted

online FOG monitoring. They introduced two main changes: I) they introduced

an additional power index (PI) threshold for signal within the 0.5–8 Hz to discard

standing-data as FOG episodes candidates; II) they employed a window duration of

4 s. They reported 73.1% and 81.6% for sensitivity and specificity, respectively, im-

plementing a general threshold, whereas, with personalised thresholds, they achieved

9

88.6% for sensibility and 92.8% for specificity, in the task of online FOG monitoring.

These results were, however, computed permitting an offset margin of 2 s of error for

the predictions, which enhanced the results for both, sensitivity and specificity. Due

to its simplicity, the MBFA method has been adopted by the research community as

the basic performance reference for automatic FOG detection in PD patients inertial

sensors data. The data employed throughout their study were the Daphnet dataset

[17]. These data were collected in the Dynamic Analysis of Physiological Networks

(DAPHNet) project, a European project. The data were composed by one hour of

tri-axial accelerometer measurements recorded with three MEMS, placed to the shank

(above the ankle), the thigh (above the knee) and the lower back. The collection was

performed across 8 PD patients who manifested FOG episodes. The data collection

was performed in-lab settings and under controlled conditions. Patients were required

to complete three walking tasks: I) walking back and forth in a straight line, includ-

ing several 180 degrees turns; II) randomly walking following the instructions of the

therapists, which included stops and turns; III) and walking to another room and

coming back with a cup of water. The patients and therapists agreed that the lower

back was the most acceptable of the three sensors’ placements employed. The Daph-

net dataset was designed to permit the design of automatic FOG detection methods;

however, the conditions defining the data collection protocol oversimplify the FOG

detection’s task, permitting to design highly accurate models, in test data, which

would be useless in real environments.

The work from Bächlin et al. [16] was continued by Mazilu et al. in 2012 [79].

They presented a novel approach for monitoring FOG in PD patients, which combines

the usage of smartphones and wearable accelerometers for data-collection. They

employed, for the first time, ML algorithms for the online FOG detection task. Some

of the ML algorithms they tested were: random forests, decision trees, naive Bayes

and k-nearest neighbours (k-NN). They reported top results of 66.25% and 95.38% for

sensitivity and specificity, respectively, using user-independent settings and random

forests as classifier algorithm. The data employed throughout their study were the

Daphnet dataset [17].

In 2013, Moore et al. [82] published a comparative study of different configurations

of sensors and placements and signal processing parameters in PD patients for FOG

monitoring with the MBFA. The data for their study were composed of inertial signals

recorded from seven sensors in different body placements, which were collected from

25 PD patients. Thus, they were able to test all possible combinations of sensors’

recorded data to assess the best locations for FOG monitoring objectively. They

10

showed that sensitivity performance was highly bound to the window size, retrieving

results above 70% with all sensor combinations with window times ranging from 2.5

s to 5 s. Not surprisingly, the best sensors configuration was to employ all seven

sensors simultaneously. Nevertheless, they recap with a recommendation of three

possible configurations for FOG monitoring based on the performance obtained and

some convenience criteria. The first recommended setting suggest implementing all

seven sensors, though they claim this one to be taken as a reference configuration while

focusing more attention on single shank sensor and single back sensor configurations,

which although being suboptimal configurations also exhibited good results.

Within the same year, Tripoliti et al. [141] proposed an automatic FOG detection

methodology. Their methodology consisted of four stages: data cleaning, filtering,

feature extraction and classification. As classifiers, they tested the following ML

algorithms: naive Bayes, random forests, decision trees and random trees. They

reported best results by applying leave-one-patient-out cross-validation with the ran-

dom forests algorithm, for which they achieved 89.3% and 79.15% for sensitivity and

specificity, respectively, when considering only the results associated with PD patients

who suffered the FOG symptom. The data they employed throughout the study were

collected from 16 people, of whom 5 were healthy subjects, 5 were PD patients who

manifested the FOG symptom, and the remaining 6 were PD patients who suffered

from other symptoms. The devices for collecting the data were 6 accelerometers and

2 gyroscopes attached to different positions of the subject’s body.

In 2016, Mazilu et al. [77] presented a study for assessing the representation power

of wrist-worn sensing data compared to lower-limb sensing, which is the state-of-the-

art for FOG monitoring in PD patients. Their approach implemented the C4.5 ML

algorithm. Although they employed a more relaxed evaluation mechanism than in

their previous work [79], they were unable to reach state-of-the-art performance in

the target task. However, they still suggested that wrist sensing could be a feasible

and comfortable alternative for FOG monitoring in PD patients.

Within the same year, Rodŕıguez et al. [31] presented a study aiming at FOG

detection in PD patients during their ADL, and adopting the support vector machines

(SVMs) for the FOG binary classification task. They proposed an innovative feature

extraction which is designed to be implementable in low-power consumption wearables

for online FOG detection. The data, which was composed of inertial signal recordings

at 40 Hz from a single inertial measurement unit (IMU) placed at the left side of

the waist, was acquired following the same conventions reviewed in [81]. However,

laboratory data acquisition biases the data with information related to the experiment

11

characteristics as in [81] and [79]. Thus, they collected the data at the patients’

homes, configuring each test to adapt to the real activities in which the patient would

experience FOG, rather than employing homogeneous lab settings to force patients

to trigger FOG events. Although they have not reported test error results in this

work, they performed a comparative study of the state-of-the-art feature extraction

techniques for FOG detection, while reporting cross-validation error when training

a model for each combination of ML algorithm (e.g. k-NN, random forests, naive

Bayes, logistic regression and SVM) and feature extraction strategy. Furthermore,

they considered different window sizes (i.e. ranging from 0.8 s to 6.4 s) to maximise

the representation power of each configuration. Their results suggested that SVMs

with their proposed feature generation are powerful strategies for FOG detection

since the cross-validation performance for this configurations were the most accurate

among all regardless of the window size. Concretely, highest results were achieved by

using a window duration of 1.6 s, for which they reported 89.77% as the GM between

sensitivity and specificity.

Recently, in 2017, Rodŕıguez et al. [110] presented an extension of [31] and [112].

They present a complete review of the state-of-the-art for automatic FOG monitoring

while giving specific details on their methodologies for performing FOG monitoring

with SVMs and their evaluation strategy. Concretely, they propse a new assess-

ment method denoted as episodic evaluation. This episodic evaluation is motivated

by the idea of avoiding to overestimate the models’ specificity. Thus, the model’s

evaluation is performed episode-wisely, rather than the window-wisely, which is the

implemented technique by other authors. In their study, they showed performance

results for the GM between sensitivity and specificity of 76.8% (i.e. 74.7% and 79%

for sensitivity and specificity, respectively), which was determined by using leave-one-

patient-out with an episode-based evaluation strategy, instead of the window-based

strategy. Furthermore, when applying personalisation techniques to the model, they

were able to achieve 84% for the same metric.

As mentioned in Section 1.3, from the previous work described, approaches pre-

sented by Bächlin et al. in 2009 [16], Mazilu et al. in 2012 [79], Tripoliti et al. in

2013 [141] and Rodŕıguez et al. in 2016 [31], are reproduced to train powerful biclas-

sification shallow ML algorithms to compare the state-of-the-art approaches to ours.

The detailed discussion on the reproduction and training procedures are exposed in

Section 5.4.

12

Chapter 2

Deep learning

2.1 Convolutional neural networks

ConvNets [73] are a type of feed-forward deep neural network (DNN), which typically

combines convolutional layers with traditional dense layers to reduce the number of

weights composing the model. Convolutional layers enforce local connectivity be-

tween neurones of adjacent layers to exploit spatially local correlation. Concretely,

convolutional layers are formed by kernels that share weights and, thus, permit to

learn position invariant features from the input data.

Therefore, convolutional layers can extract features from data that have under-

lying spatial or temporal patterns, such as images and signal data. Furthermore,

stacking these layers permits to extract progressively more abstract patterns.

While traditional DL models are composed of stacked dense layers, which lead to

an overwhelming number of weights, ConvNets implement a powerful and efficient

alternative if the target data present underlying spatial patterns.

2.1.1 ConvNets for image recognition

Image data problems are the main application field of ConvNets, due to the per-

fect matching between images characteristics and ConvNets properties. Although,

ConvNets are the most powerful and efficient location invariant feature extractors,

the key strategies when training DL models are to employ sample normalisation and

augmentation techniques. ConvNets can usually are trained on image data; however,

this may be one-dimensional (1D), two-dimensional (2D) or three-dimensional (3D)

image data. Commonly, patterns in images, such as target elements to recognise, are

invariant to rotation, scale, orientation, size, position, resolution and illumination.

13

Figure 2.1: Typical ConvNet architecture for 2D image recognition [29]. This figure
illustrates a typical seven-layer ConvNet architecture. Concretely, the architecture is
composed by: I) an input layer, II) a first convolutional layer, III) a first pooling (or
subsampling) layer, IV) a second convolutional layer, V) a second pooling layer, VI)
a dense layer and VII) an output dense layer.

For achieving optimal performance, samples are first normalised to reduce the inten-

sity and illumination variance between instances of similar meaning, and finally, the

data are artificially replicating by applying random rotations, shifts, flips, distortions,

rescales and crops. Therefore, in these circumstances, one may obtain a model capa-

ble of extracting the original data patterns in their maximal expressively form from

each sample, such that if the same pattern appears in any different sample may be

successfully identified [53].

ConvNets may include pooling layers between consecutive convolutional layers, as

illustrated in Figure 2.1. Pooling layers down-sample the output of their previous

layer by operating small neighbours areas (see Figure 2.2). The motivation for this

strategy is that the relative approximate locations between patterns are more relevant

than their exact positions [69, 97, 132]. This strategy may aid the model to generalise

and to control overfitting by forcing it to learn more abstract representations with

lower parameters as the deeper the information flows [132].

DL models are composed of large structures of learning units interconnected, which

given a new sample should propagate the information of it through the network and,

finally, perform a prediction on it. Activation functions control this information

propagation in the units conforming this structure. The hyperbolic tangent function

(Tanh), f(x) = tanh(x), the logistic sigmoid function (Sigmoid), f(x) = (1 + e−x)−1

and the rectified linear unit (ReLU) f(x) = max(x, 0), are some of the popular

activation functions for ConvNets. ReLUs have shown, however, to be more time

efficient than other alternatives. Since DL strategies have a computational bottleneck

14

Figure 2.2: Max pooling illustration [29]. Max pooling operator always takes two
arguments. Its first one, 2x2 in this case, determines the shape of the rectangle in
the image to be operated by the pooling operator each time. Whereas the second
parameter is named ‘stride’, which was set to 2 in this example, referrers to the
number of values to skip before applying the pooling operator again. This figure,
hence, illustrates an example case of applying ‘2x2 max pooling with stride 2’.

this last function has become the most widely exploited one when implementing

ConvNets [69, 133].

2.1.2 ConvNets for sequence data

Whereas images maintain a set of invariance properties, which compose ConvNets’

ideal conditions, other data formats, such as videos and signals, may also benefit

from them. These other data types are denoted as time series data since including

temporal dependencies between instances.

The most common technique to deal with classification tasks in time series data

is to use a windowing strategy. Windowing consists of splitting the data into equally-

sized consecutive parts to address the classification task window-wisely instead of

instance-wisely.

When applying these techniques to signal data, the input is reshaped to 1D-image-

like data samples, while in the case of video data, the input is reshaped to 3D-image-

like samples. However, the temporal information restricts the types of invariance that

should be considered. Their essential difference is that the augmentation strategies

allowed on time series data may be drastically constrained (e.g. the flip operator

may be incoherent since time flows only in one direction). Thus, all augmentation

techniques should be designed to be coherent with the domain’s knowledge.

15

2.1.3 Application of ConvNets to biomedical data

Recently, a trend in biomedical research has arisen towards adopting DL techniques

for tackling some biomedical analysis problems [4, 104]. Next, some of the most recent

work related to DL strategies for biomedical data analysis are commented.

ConvNets provide very powerful representations on image-data problems [55].

Other recent applications of ConvNets in biomedical research are to diagnose mild

cognitive impairment from resting state functional MRI (fMRI) data [130], and to

segment 3D biomedical image, such as MRI, fMRI and computed tomography [24].

ConvNets received exceptional acceptance for dealing with biomedical image data.

The reasons for it were that ConvNets have a high capacity of exploiting image data,

while biomedical data samples belonging to the same task (e.g. magnetic resonance

imaging (MRI) brain data for stroke detection in young people) have low variance.

Thus, ConvNets could deal with the scarcity of data, which is characteristic from

biomedical datasets.

2.2 Recurrent neural networks

As ConvNets, recurrent neural networks (RNNs) are an extension of feed-forward

DNNs, which can learn relations between data samples structured in sequences by

having a recurrent hidden state which can maintain information from the previous

samples.

Given a temporal input sequence x = (x1, x2, ..., xr), the RNN updates its recur-

rent hidden state ht by

ht = g(Wxt +Uht−1) , (2.1)

where g is an activation function such as the Sigmoid or the Tanh, W is the input-

hidden matrix and U represents the hidden-hidden weight matrix.

Although having Turing capabilities [127], according to Bengio et al. (1994) [19],

it is hard to train long-term dependencies by these architectures.

LSTMs [60]. LSTMs extend RNNs by implementing memory blocks instead of

recurrent units. These blocks implement additional gating mechanisms by which the

network can learn when to store, retrieve and flush previous information. These

functionalities allow the network to learn long-term relationships.

16

GRUs [25, 27]. GRUs simplify LSTMs by setting a single gating unit that simulta-

neously controls the flush and store actions, which were controlled by two independent

gates in the former. Although being simpler than LSTMs (see Figure 2.3), this ap-

proach has reached comparable results in several tasks [27]. GRUs tend, moreover,

to be more computationally efficient and to converge in fewer epochs than LSTMs.

(a) LSTM block. (b) GRU block.

Figure 2.3: Figures 2.3a and 2.3b illustrate an LSTM and a GRU blocks, respectively.
In Figure 2.3a i, f and o are the input, forget and output gates, respectively. c and c̃
denote the memory cell and the new memory cell content. While in Figure 2.3b r and
z are the reset and update gates, and h and h̃ are the activation and the candidate
activation. These figures were extracted from [27].

2.2.1 Application of RNNs to biomedical data

The latest advances in DL strategies specially designed to tackle time series data

problems, such as Memory Networks [146] and Differential Neural Computers [54],

have recently become the state-of-the-art on several complex problems, such as to

answer questions about a text or dialogue, to find the shortest path and to infer miss-

ing links in graphs [54]. However, these architectures intend to address reasoning-like

problems, while most of time series biomedical data problems can be defined as clas-

sification or regression problems with relevant underlying patterns across sequences

of data samples. These problems can, thus, be efficiently dealt by simpler recurrent

DL strategies, such as RNNs, LSTMs and GRUs. However, whereas ConvNets could

handle scarcity of data due to the low variance between data samples, in time series

data the inter-samples differences increase, even when all collection conditions are

equally setup.

Biomedical signals’ extreme complexity, its susceptibility to noise and the intersub-

ject physical differences, which may introduce high variance in the data, are the major

issues preventing these problems from being solved. Furthermore, the data available

17

for addressing these problems is limited, while designing appropriate data augmen-

tation strategies is usually challenging due to the data’s correctness fragility. Some

recent work on recurrent DL models in biomedical research are electrocardiography

signal classification [102] and to learn representations from electroencephalography

data [18].

2.2.2 Application of RNNs to human activity recognition us-
ing wearable sensors

The increasing interest in human activity contextualisation to produce adaptable

support systems and the growing computational capacity of wearable devices have

recently encouraged several research studies towards designing human activity recog-

nition (HAR) systems using wearable sensors. The technologies and strategies devoted

to solving these problems commonly match to the ones employed within biomedical re-

search field, such as posture contextualisation [112] and FOG detection [58, 103, 110].

Some recent studies on DL models for HAR are: Ordóñez et al. [91] who present

a ConvLSTM for addressing generic time series problems, which was able to outper-

form the state-of-the-art shallow ML algorithms in several benchmark datasets, while

demonstrating that introducing LSTM layers in the model improved its representa-

tion power; and Ravi et al. [103] who presented a novel approach for real-time HAR in

low-power devices. Their approach used sums of convolutions of spectral data, which

was previously windowed in the temporal domain. Their approach outperformed

other handcrafted feature extraction methods.

Despite the fact that considerable research is being undertaken to approach the

biomedical data analysis problems with DL strategies, shallow ML algorithms still

compose the state-of-the-art in PD’s motor symptoms detection [94, 110]. Neverthe-

less, problems in which DL techniques have become the state-of-the-art are rapidly

increasing, as can be observed in the cardiac disease research field [13, 67, 83].

2.3 Regularization for DL models

Regularisation techniques are those that modify a learning algorithm to reduce its

generalisation error while preserving training accuracy [53] (see Figure 2.4). Regular-

isation techniques, such as the L2-norm regularisation and L1-norm regularisation,

are frequently applied to in ML algorithms, e.g., SVMs, to control overfitting. This

18

section is devoted to providing a general overview on some of the most common regu-

larisation techniques for DL. Concretely, the approaches described will be: I) param-

eter norm penalties, such as weight decay; II) early stopping; III) data augmentation;

IV) dropout; and V) zoneout.

Figure 2.4: Regularization example [29]. This figure contains three main elements:
I) the red dots representing the train data of a regression problem; II) a blue line
representing a solution without regularization for the regression problem; and III) a
green line describing the same solution, but with L2 weight regularization.

2.3.1 Parameter norm penalties

The regularisation techniques that limit the representation power of learning mod-

els are hereafter described. These approaches are directly added as a penalisation

cost Ω(θ) to the models’ objective function J(Y t,Y p) such that the function to be

optimised is redefined as

J̃(θ;Y t,Y p) = J(Y t,Y p) + λΩ(θ) , (2.2)

where λ is an hyperparameter that balances between the model’s capacity and its

training error, θ represents the model’s parameters, which would correspond to DL’s

weights and/or activations, and Y t are the ground truth labels of the data samples,

while Y p represent the model’s predictions.

19

L2 parameter regularisation. This technique penalises the parameters’ norm,

with emphasis on abnormally high values. Concretely, this technique is defined as

Ω(θ) =
1

2
‖θ‖22 =

1

2

∑
i

θ2i . (2.3)

Thus, it will positively reward the model’s objective function when the representation

responsibility is distributed among all patterns, compared to when it is concentrated

on a set of them. Among all traditional ML regularisation techniques, the L2-norm

regularisation is the most widely implemented in DL. Concretely, it is usually applied

to the models’ weights and referred as weight decay.

L1 parameter regularisation. Similarly to the L2-norm, this technique penalises

the parameters’ norm; however, it lacks any special attention, by penalising only the

sum of values. Concretely, this technique is defined as

Ω(θ) = ‖θ‖1 =
∑
i

|θi| , (2.4)

which will positively reward the model’s objective function when the representation

responsibility is sparse among all patterns, thus, only a set of parameters are non-zero.

2.3.2 Early stopping

DL models are trained iteratively aiming to approach relevant local optima in the

solutions space, which can successfully represent the target problem. These iterations

are denoted as epochs. Correctly establishing the number of epochs is important

to prevent the model from overfitting to the training data, while avoiding useless

computation by detecting if the model has converged.

The number of epochs by which a model may reach convergence will usually be

correlated to several other characteristics, such as the model’s architecture, the data,

the optimisation method and its internal parameters, such as the learning rate, and

the regularisation strategies being employed.

Due to its importance and complexity, DL models are usually trained using an

early stopping strategy. Early stopping is the term for referring that the train will

stop when some criteria, which are related to the algorithm’s training performance,

is accomplished, instead of running indefinitely or fixing the number of epochs.

20

2.3.3 Data augmentation

The best strategy for enhancing ML models’ generalisation is to increase the training

data available [53]. Data augmentation approaches are those that artificially incre-

ment the training data available, which, as mentioned in Section 2.1, are a common

practice in DL. Furthermore, in some problems, it may be possible to artificially gen-

erate new coherent data, such as generating in-car conversation data by adding in-car

noise over conversation data.

2.3.4 Dropout

Dropout is an efficient and effective regularisation strategy [129, 133], which provides

an approximation to implementing the bagging ensemble method over numerous DL

models while preserving inexpensive computational costs. The main intuition behind

dropout is to employ only a random subset of the network each time a new instance

is fed to the model. This approach takes only one parameter, which corresponds to

the probability by which a neurone is dropped.

Implementing dropout leads the model to learn more robust features since several

parts of the model must be able to perform the target task independently successfully.

In evaluation time, dropout is deactivated producing, thus, this bagging-like result.

2.3.5 Zoneout

Zoneout [70] is a regularization strategy especially designed for recurrent architec-

tures. Its main intuition is, similarly to dropout, which randomly drops parts of the

network, to randomly preserve the values of the network. Concretely, zoneout intro-

duces noise to the training by randomly replacing some activations of the network’s

units with their previous timestep activation values.

2.4 Training DL models

Training shallow ML algorithms are typically performed employing strategies, such

as cross-validation and leave-one-out, which intend to perform an exhaustive evalu-

ation of each hyperparameters’ configuration before training the final model. These

strategies imply that the number of models to train is equal to the total number

of possible configurations, times the number of folds for the cross-validation. This

procedure is, moreover, commonly repeated several times to ensure robustness of the

configuration selected. DL models, however, are defined by overwhelming amounts of

21

hyperparameters, while being non-deterministic due to randomness in several oper-

ations, such as weights initialization and dropout. Consequently, these models may

require being retrained several additional times compared to traditional ML algo-

rithms to ensure robustness. Running blind hyperparameters exhaustive exploration

with cross-validation would imply an overhead of factor 10, plus having to explore

the entire hyperparameters space, which is usually avoided.

DL models are, thus, trained and evaluated on different data to avoid having to

repeat the training process. Concretely, the available data are split into training data

and testing data. Most data are usually assigned to the training partition (e.g. 70%),

while a still representative part (e.g. 30%) is kept for testing purposes. This split is

performed randomly on data that follows the same distribution.

The main intuition, hence is that, from all models trained only one is selected

and tested on the testing data. Therefore, the final performance will be the one

reported on the testing data. However, as mentioned in Section 2.3, the DL model,

may overfit on the training data, and, thus, fail in the testing data. Therefore, to

control the overfitting, the training data are further split into the training-train data

(e.g. 70%) and training-validation data (e.g. 30%), which will sever for training the

model and for evaluating its generalisation capacity, respectively. The main drawback

of this strategy is that the finally amount of data employed for training the model is

considerably reduced (e.g. 0.7 ∗ 0.7 ∗ 100 =49%).

Optimization algorithms for DL DL models implement stochastic gradient-

based algorithms to optimise the error loss after each batch is processed. These

stochastic training methods perform the optimisation in minibatches, which are par-

titions of the entire training-train data. Thus, models compute the gradients and

carry out the weight corrections per each minibatch, rather than performing a single

update per epoch. The optimal magnitude of these corrections is difficult to match,

however, if these corrections are small enough, the model will eventually converge.

This magnitude is referred as the learning rate and is commonly set to low values.

Recent optimisation algorithms, such as adaptive gradient algorithm (AdaGrad)

[36], implement adaptive learning rate techniques. Algorithms with adaptive learn-

ing rates permitting to set the learning rate to high values to accelerate the train-

ing procedure. Other popular stochastic gradient-based algorithms adopted in DL

are: stochastic gradient descent (SGD) [21], which, although having a fixed learn-

ing rate, is the most widely used optimisation algorithm in DL models [53]; root

mean square propagation (RMSProp) [137], which extends the AdaGrad algorithm;

22

AdaDelta [150], which is another extension of AdaGrad; and adaptive momentum

(Adam) [66].

Weight initialization. Setting proper initial weights is a must for successfully

training DL models. However, according to Goodfellow et al. [53], several initial-

izations will usually allow a DL model to train in a proper way [53]. Furthermore,

there are conflicting perspectives about which initialization approaches may perform

better in practice due to several factors being affected, such as regularisation and

optimisation, which may encourage weights to be small and large, respectively.

2.5 Architecture notation

The notation employed throughout this master thesis for describing DL architectures,

which extends the nomenclature presented by Pigou et al. [97], is hereafter defined:

• Convolutional layer → C(x1, x2, ..., xd|k) were xi refers to the size on the ith

dimension of the kernels in the layer, and k denotes the number of kernels.

• Dense layer → F (n) were n is the number of neurones of the layer.

• LSTM layer → LSTM(n) were n is the number of neurones of the layer.

• GRU layer → GRU(n) were n is the number of neurones of the layer.

23

Chapter 3

Data collection and processing

3.1 Data collection

The data [110] employed were composed of inertial signals from 21 PD patients

recorded by a single IMU placed at the left side of the patient’s waist (see figure

3.1). This IMU generated 9 signals sampled at 200 Hz as output. The 9 signals

represented the measurements of 3 tri-axial sensors: gyroscope, accelerometer and

magnetometer.

Figure 3.1: The data collector IMU and its location on patients’ body (i.e. left side
of their waist) [31].

As mentioned in Section 1.4, the data were acquired within the scope of REM-

PARK [124]. REMPARK’s experimental protocol collected data from 92 PD patients

(i.e. 36 women and 56 men), which were selected according to the following criteria:

1. To be diagnosed with PD according to the UK Brain Bank.

2. To have Hoehn & Yahr stage above 2 in OFF-state.

3. To not have dementia according to DSM-IV criteria.

24

4. To give their written informed consent for using the collected data in the re-

search carried out within the REMPARK project, and other studies conducted

by the same intuitions, which is the case of this study.

REMPARK’s data aimed to be suitable for the creation of algorithms to analyse PD’s

motor characteristics in uncontrolled environments. Collection protocols, thus, were

performed at patients’ ADL locations (i.e. homes and surroundings) while performing

several activities, such as showing their homes, brushing their teeth, carrying shopping

bags and entering to their building (e.g. climbing stairs or using their elevator). All

data collection trials were video-recorded. Medical experts designed this collection

protocol, which, moreover, complied with the ethical approval. The protocol aimed to

provide data on patients performing similar ADL to ensure reproducibility of results

of learning algorithms which intended to analyse PD’s motor symptoms data and

information, such as FOG, tremor, gait parameters (e.g. speed and step length),

bradykinesia of lower and upper limbs, and dyskinesia.

Data were labelled patient independently using the patient’s motor characteris-

tics (e.g. symptoms’ manifestation frequency and walking patterns). These features

were obtained from analysing every patient’s performance of specific activities, such

as walking through narrow spaces and performing several turns. When labelling the

data these patients’ motor characteristics information served to accurately determine

each patient’s symptoms and activities from the video recordings and clinician an-

notations, individually. This strategy aimed to capture any inter-patient variability

by avoiding to compare them during the labelling tasks, even if differing from the

standard symptoms manifestation patterns.

The collection trials were structured in two main parts: the first part of the

collection was performed with the patients in OFF-state; before the second part,

patients took their medications, and, thus, it was conducted again with patients in

ON-state. Each of these protocol parts was, moreover, divided into two main subparts:

I) to perform controlled and triggering activities, which lasted for few minutes (min);

II) free activity monitoring of the patient so that natural symptoms and activities are

recorded, which composes most of the data recorded per patient.

During the free activities monitoring parts of the collection protocol, the patients

performed a set of activities more frequently recorded ADL [16], such carrying an

object from one room to another, while other ADL were specially introduced to

difficult the symptoms analysis tasks, such as teeth brushing, drawing, painting and

erasing in a sheet of paper. The characteristics of this reach dataset intend to force

25

models trained on it to learn robust representations, to produce reliable and useful

systems for PD patients daily support.

Figure 3.2: This figure is illustrates two slices of the data composing the REMPARK’s
database. On the left side, the figure illustrates a part of the accelerometer signals
data with its associated activity and posture label, while on the right, a different part
of accelerometer data is shown with its FOG labels associated [124].

The data collected included: I) signal data from an IMU placed at the left side of

the waist; II) signal data recorded from a tri-axial accelerometer placed on the wrist

for assessing tremor and bradykinesia; III) video recordings recorded from a mobile

phone camera (i.e. Nexus S Google), which was chosen to reduce the intrusiveness

perception of the patients; IV) the clinicians annotation made on the video after the

data capturing (i.e. symptoms and activities); and V) the patients results from all

the inclusion criteria and additional tests performed, such as the FOG-Q. From these

data, only the signals recorded from the patients’ waists were employed.

Concretely, this master thesis has contributed to an ongoing project named ‘Im-

proving Quality of Life with an Automatic Control System’ (MASPARK), which is

especially focused on the study of FOG. For the MASPARK project, 21 patients were

selected from the REMPARK database [124]. This second selection protocol involved

evaluating the relevance of patients for participating in FOG detection studies [110].

These inclusion criteria were:

1. To manifest at least 1 min of FOG labelled in their data recordings.

2. To have reached at least a score of 6 in the FOG-Q.

Within the scope of the MASPARK, the data from the overall 21 PD patients (i.e.

3 women and 18 men) accomplishing these prerequisites were relabelled by clinicians

relying only on the video recording associated with the waists’ signals data.

26

Most of the previous research targeting automatic FOG detection employed datasets

acquired by using uniform in-lab setups [81, 16, 79, 78]. Thus, the data utilised in

this study are significantly more complex and complete than most of other datasets

considered in previous research approaching the same issue.

3.2 Data overview

The data were composed by, approximately, 40 min (i.e. 20 min in OFF-state and

20 min in ON-state) of 9-channel signal data sampled at 200 Hz per patient. The

overall data instances available could, thus, be computed as 40 min×60 s×200 Hz×
21 patients ≈ 107 instances.

As mentioned in Section 3.1, the data were collected by the medical institutions

participating in the REMPARK project. Consequently, these data were collected

by 4 different medical institutions. Furthermore, only 3 out of the 21 patients were

women. A major rule in ML is to ensure that training and testing data represent the

same distribution. Therefore, training and test patients were split randomly within

the following constraints: I) both, the training and the testing patients sets, should

contain at least one patient from each medical institution, as well as, at least one

women; II) the relative difference between FOG percentages of both sets should be

less than 50% (e.g. if the training set had a 15% of FOG instances, the test set

should have a FOG percentage within the range [7.5%, 22.5%], which corresponds to

15 ± 15
2

); III) the number of patients assigned to the test set should be less than 7.

Fortunately, this process concluded with a split such that 4 patients were assigned to

the test set, while 17 were assigned to the training set.

Table 3.1: Training and test data properties. Columns naming description: ‘# pa-
tients’ → number of patients in the set; ‘# Instances’ → number of data instances
recorded by the IMU; ‘FOG %’→ percentage of FOG instances (i.e. those with label
equals 1) with respect to the ‘# Instances’ value; ‘Undefined %’ → percentage of
undefined instances (i.e. those with label equals 0) with respect to the ‘# Instances’
value.

set of data # patients # Instances FOG % Unlabelled %

Train 17 10755200 11.04 27.23

Test 4 2666600 8.14 37.67

As can be observed from table 3.1, the percentage of FOG instances was similar for

training and testing. However, both percentages were small, which could lead to class

27

imbalance issues. The percentage of undefined data were, moreover, large enough to

produce patient imbalance problems. Furthermore, processing these data in train

time would imply significant useless computation while solving the bi-classification

task.

Table 3.2: Training data properties per patient. Columns naming description: ‘Pa-
tient ID’ → patient reference employed throughout this document; ‘# Instances’ →
number of data instances recorded by the IMU; ‘FOG %’ → percentage of FOG
instances with respect to the ‘# Instances’ value; ‘Undefined %’ → percentage of
undefined instances with respect to the ‘# Instances’ value; and ‘Relevance %’ →
proportion of defined (i.e. not undefined) instances of this patient with respect to the
overall defined instances in the patients group (i.e. train or test) being analysed.

Patient ID # Instances FOG % Undefined % Relevance %

0 827400 8.05 38.69 6.48

1 414600 2.66 34.24 3.48

2 696200 7.7 24.84 6.69

3 182800 10.72 27.88 1.68

4 550400 15.04 49.83 3.53

5 472600 15.65 18.56 4.92

6 479800 14.76 18.75 4.98

7 570000 5.1 19.11 5.89

8 877800 5.38 25.14 8.4

9 897000 12.85 24.1 8.7

10 638600 9.53 43.88 4.58

11 489600 26.99 16.85 5.2

12 700400 5.74 28.98 6.36

13 328400 8.38 25.46 3.13

14 790600 4.42 26.43 7.43

15 1080800 26.68 17.91 11.34

16 758200 4.38 25.4 7.23

Table 3.2 and Table 3.3 illustrate the per patient characteristics for the train and

test data, respectively. From them, it can be observed that patients have different

influence in their sets. These differences may produce patient patterns imbalance.

On the one hand, from Table 3.2 it can be observed that there was a significant

patient imbalance problem on the original data, which was worsened by the undefined

instances. Training the model with the original data would lead to overspecialising

the model on a subset of patients while ignoring the rest. On the other hand, from

28

Table 3.3: Testing data properties per patient. Columns naming description: ‘Patient
ID’→ patient reference employed throughout this document; ‘# Instances’→ number
of data instances recorded by the IMU; ‘FOG %’→ percentage of FOG instances with
respect to the ‘# Instances’ value; ‘Undefined %’→ percentage of undefined instances
with respect to the ‘# Instances’ value; and ‘Relevance %’ → proportion of defined
instances of this patient with respect to the overall defined instances in the patients
group being analysed.

Patient ID # Instances FOG % Undefined % Relevance %

17 890800 5.58 49.51 27.06

18 606800 5.98 25.71 27.12

19 457400 10.38 23.78 20.98

20 711600 11.73 41.96 24.85

Table 3.3 it can be observed, however, that this problem was less severe in the testing

data.

3.3 Offline data cleansing and signal processing

This section describes and discusses, step by step, the overall data processing process

performed before training the DL models.

3.3.1 Data cleansing

Cleaning the data was the first action to take to solve the missing values and unla-

belled data issues.

Missing values. If the missing values segment was shorter than 0.1 s in a row, these

were linearly interpolated. Otherwise, the file was split leaving out the massaging

values to maintain temporal coherence in the data. These missing values corresponded

to microSD errors during the data acquisition process.

Unlabelled data. The presence of unlabelled data by itself did not suppose a ma-

jor issue since it was still possible to train the algorithms by skipping the unlabeled

instances in training time. It was noted, however, that some patients were nearly ig-

nored due to having several unlabelled data in their files. Furthermore, this supposed

a continuous waste of computational power. The implemented solution consisted to

splitting the patients’ files leaving the unlabelled data out if these last more than 5 s.

29

3.3.2 Signal processing

The data were recorded at 200 Hz, which is a very high frequency to mapping human

movements. In addition, Rodŕıguez et al. [110] performed FOG detection successfully

on the same data down-sampled at 40 Hz. According to the NyquistShannon sampling

theorem, thus, the data employed by Rodŕıguez et al. [110] could only represent

appropriately frequencies up to 20 Hz, confirming the excess of resolution in the

original signal, which may be representing frequencies up to 100 Hz according to the

same theorem.

To remove irrelevant noise from the data, such as sensor’s generated one, the data

were filtered using a lowpass filter. This filter was implemented by a Butterworth

filter, with cut-off frequency set to 20 Hz and 8th order. The Gustaffson’s method

[57] was implemented to handle the filter’s initial conditions.

Following the intuition of the sampling theorem, the data were down-sampled to

50 Hz to avoid unnecessary computation due to reducing the number of samples in

the data by a factor of 4.

3.3.3 Patient data balancing

At this stage of the offline data preprocessing, the original imbalance problem be-

tween patients prevailed. This problem would give more relevance to some patients

compared to others, which, with only 17 patients for the training process and 4 for

the testing, could lead to misleading results. Note that most authors in the FOG de-

tection literature present personalised methods, which may outperform their generic

approaches by more than 10% (e.g. the improvement achieved by Mazilu et al. in

2012 [79] by using a personalised strategy was from 79.4% to 99.83% for the GM

between sensitivity and specificity, which essentially is overfitting); thus, it can be

assumed that patients may present the same patterns repeated in their data.

Furthermore, towards training recurrent DL models, it is useful to have equally

sized files to control when to flush the model’s memories. The strategy to correct

the patient imbalance should, thus, produce equally sized files for implementation

convenience.

Recurrent DL models allow representing temporal patterns across samples. How-

ever, even the gated techniques, such as LSTMs and GRUs, are unlikely to learn

long-term dependencies (e.g. from more than 50 of samples before) in practice. Ad-

ditionally, even by doing it, due to the lack of data, undesired patterns could be in-

troduced, which were arbitrarily produced. Therefore, from the intuition that events

30

taking place more than 2 minutes previous to the current state may have an insignif-

icant influence towards triggering FOG events, data were, thus, split into files of 2.2

minutes each with overlapping of 50% to capture all temporal patterns in the original

data.

Concretely, the file size was adjusted to reduce the amount of data discarded. As

described in Chapter 5, the batch size for training the models was set to 16, while,

as described in Section 3.4, data were split into windows of 2.56 s; thus, setting

the file size to 2.2 minutes would allow to generate 3.22 batches per file, which will

permit to ensure training at least 3 batches per file in the recurrent DL models, which

require that batches are fully generated by the same file. Finally, note that due to

the augmentation strategies defined in Section 3.5, the 0.22 remaining part of the file

will allow applying window shifting strategies while still ensuring that the number of

batches will be of 3.

Once all patients data were represented by files of 2.2 minutes, to ensure similar

relevance between them it was enough to replicate files from patients with lower repre-

sentation randomly. In Figure 3.3 the file shape is shown together with the window’s

one; moreover, Algorithm 1 provides an overall overview of the data preprocessing

procedure.

3.4 Data representation

This section describes the techniques implemented to transform the preprocessed data

to a proper representation for feeding the DL models.

3.4.1 Windowing

The most common technique to deal with classification tasks in time-series data is

to use a windowing strategy. To window the data implies to split it into equally-

sized consecutive parts to address the classification task window-wisely instead of

instance-wisely.

According to Moore et al. [82] window sizes for FOG detection should be at

least of 2.5 s, while Goodfellow et al. [53] mentions that in practice, GPUs are more

efficient when input sizes are powers of two. The windows’ length were, therefore,

set to 2.56 s, since this value produced inputs of size 27 (i.e. 2.56 s ×50 Hz = 27

instances). Figure 3.3 illustrates how windows are arranged in each data file.

The labels of the original data were, however, per instance; thus, each windowed

was relabelled according to the following criteria:

31

Algorithm 1 Data preprocessing

1: procedure preprocess(raw data)
2: cut← 20 . filter’s cut-off
3: order ← 8 . filter’s order
4: type← Butterworth . filter’s type
5: freq ← 50 . subsampling frequency
6: size← 132 . files’ sizes
7: data← [] . processed data
8: for <patient in raw data> do
9: patient data← []

10: for <raw file in patient> do
11: clean list = CLEAN(raw file) . data cleansing
12: for <clean file in clean list> do
13: file data = FILTER(clean file,cut,order,type) . data filtering
14: file data = SAMPLE(file data,freq) . data subsampling
15: file list = SPLIT(file data,size) . rearrange files’ sizes
16: for <file in file list> do
17: APPEND(patient data,file)
18: end for
19: end for
20: APPEND(data,patient data)
21: end for
22: end for
23: patient list← data.patients . list of files grouped by patients
24: file count← MAX SIZE(patient list)) . maximum number of files
25: for <patient in data> do . set all patients to file count
26: while SIZE(patient) < file count do
27: file← RANDOM SELECT(patient) . select a random patien’s file
28: file copy ←COPY(file)
29: APPEND(patient,file copy)
30: end while
31: end for
32: return data
33: end procedure

32

1. If the window contained FOG symptom instances:

(a) If the FOG instances composed at least the 50% of the in-window data,

then this window was labelled as a FOG window (i.e. label equals 1).

(b) Otherwise, the window was labelled as an undefined window (i.e. label

equals 0).

2. If the window contained non-FOG symptom instances, but, it contained unla-

beled instances, the window was set to be unlabelled.

3. Otherwise, the window was set to be a non-FOG window (i.e. label equals -1).

Finally, the data were normalised by diving by the precomputed sample standard

deviation from the overall training dataset to enhance DL models’ learning quality.

Figure 3.3: Preprocessed file being windowed.

3.4.2 Spectral window stacking

DL models are powerful feature extractors, however, if being provided with insufficient

information, these models, as any ML algorithm, may fail to solve the task. Part of the

features computed in the approach proposed by Rodŕıguez et al. in 2017 [110] involve

operating with the previous window. This window transitional information usage

33

suggests interwindow information may be necessary succeed in the FOG detection

task on the target data.

Following this intuition, the presented approach is trained with a data represen-

tation that allows the DL algorithms to extract interwindow dependencies. This

representation strategy is from now on referred as spectral window stacking.

The spectral window stacking SWS(Wt,Wt−1) is a function with two arguments:

Wt and Wt−1, which refer to the window to be analysed at time t and its previous

one, respectively. Concretely, the process is composed of the following steps: I) the

fast Fourier transform (FFT) is computed for both windows, resulting in two new

windows of the same size; II) these windows are rescaled by dividing by the window’s

size; III) taking advantage of the symmetry properties of the Fourier transform (FT),

only the first half of each window is kept; and VI) finally, both windows are joined,

one alongside the other, forming a unique representation of half the window original

length and twice its width. The overall process is illustrated in Figure 3.4.

Figure 3.4: Spectral window stacking process diagram.

3.5 Data augmentation

After preprocessing the data and implementing the windowing strategy, the data

available were characterised as shown in Table 3.4. From it, it can be observed that

after preprocessing the data, the patient imbalance issue was solved.

As already mentioned in Section 3.2, from these patients, 4 of them were set aside

for testing purposes, leaving only 17 for training the learning algorithms. Further-

more, as discussed in Section 2.4, the training data were split into a training-train

34

dataset and a training-validation dataset, which were composed by 13 and 4 patients,

respectively. This partition was performed following the same guidelines than for

splitting the data between training and testing as described in Section 3.2. These

data are windowed, as already described, and grouped in batches of 16 windows per

batch. Further details on the data partitioning and minibatch strategies, which were

introduced in Section 2.4, the data partitioning procedure, and the implementations

of the feeding strategies for the DL models are further discussed in Subsection 5.2.8.

Table 3.5 presents the exact number of samples available for each of the mentioned

partitions. This table presents two different rows, one for the data available for train-

ing the 1D-ConvNet, and the other for both recurrent models (i.e. 1D-ConvLSTM

and 1D-ConvGRU). This differentiation is caused by the restriction of recurrent DL

models, which for training require that the time order is preserved in the data within

each batch; thus, each batch can contain only data from one patient at a time. How-

ever, the values for the Training-validation and the Testing datasets match between

both feeding strategies due to the evaluation strategy, which is performed per patient,

see Section 5.3 for the full description.

From Table 3.5 it can be observed that at this stage, the problem may be infeasi-

ble to be addressed by conventional DL strategies due to lack of Training-train data.

The most popular strategies to overcome data scarcity in DL are the data augmen-

tation techniques. Data augmentation techniques permit to increase the knowledge

extracted from data by performing replications on the data that are consistent with

the task’s domain. Data augmentation strategies implemented were:

• To shift the first window starting instance by sampling random values from a

uniform distribution defined by the range [0, window size].

• To rotate each windowed signal by simulating a rotation on the waist-sensor

through a rotation matrix generated by sampling angles (see Figure 3.1 for the

axis reference) over a normal distribution defined as:

– X-axis

∗ Range → [-30, +30].

∗ Sampled standard deviation (ST) → 10.

∗ Mean → 0.

– Y-axis

∗ Range → [-40, +40].

35

∗ ST → 15.

∗ Mean → 0.

– Z-axis

∗ Range → [-10, +10].

∗ ST → 2.5.

∗ Mean → 0.

These rotation distributions were designed to resemble naturally introduced

rotations due to the patient’s waist form and movements.

The parameters of these strategies are stochastic and may vary between epochs. Con-

cretely, each file is shifted differently at each epoch, while it may be randomly rotated

with a probability of 0.5. This approach introduced stochastic noise in the training

process, which actuated as having more data to train the model while regularising

it, and considerably reducing the model’s overfitting. This strategy was repeated 4

times per epoch, proving the DL models with about 55000 samples for training.

Algorithm 2, presented in Subsection 5.2.7, provides an overall overview of the

data representation procedure, which as already mentioned is composed of steps: I)

data augmentation; II) windowing; and II) spectral window stacking.

36

Table 3.4: Data properties per dataset and patient in it. Columns naming descrip-
tion: ‘# Instances’ → number of data instances recorded by the IMU; ‘FOG %’ →
percentage of FOG instances with respect to the ‘# Instances’ value; ‘Undefined %’
→ percentage of undefined instances with respect to the ‘# Instances’ value; and
‘Relevance %’ → proportion of defined instances of this patient with respect to the
overall defined instances in the patients group being analysed.

Dataset Patient ID # Instances FOG % Undefined % Relevance %

Training

1 171600 32.85 0.45 7.71
2 171600 5.34 0.2 7.73
3 171600 18.48 0.35 7.72
4 171600 24.2 1.19 7.66
5 171600 21.23 0.18 7.73
6 171600 5.61 0.5 7.71
7 171600 15.41 0.85 7.68
8 171600 8.73 0.56 7.7
9 171600 8.28 0.69 7.69
10 171600 15.13 0 7.75
11 171600 10.98 2.25 7.57
12 171600 6.78 0.54 7.71
13 171600 38.51 1.6 7.62

Total-train 2230800 16.27 0.72 100

Validation

14 204600 26.83 0.61 24.93
15 204600 32.92 0.78 24.89
16 204600 2.69 0 25.09
17 204600 9.7 0 25.09

Total-val 818400 18.04 0.35 100

Testing

18 105600 5.16 0.33 25.07
19 105600 26.13 0.74 24.97
20 105600 9.92 0.53 25.02
21 105600 10.96 0.84 24.94

Total-test 422400 13.04 0.61 100

Total 3471600 15.63 0.57 100

37

Table 3.5: Data properties per patient. Columns naming description: ‘Train’ →
Training-train dataset; ‘Validation’ → Training-validation dataset; ‘Test’ → Testing
dataset; ‘strategy’→ implementation of the feeding strategy for DL models, which can
be feed-forward or recurrent; ‘# samples’ → number samples (i.e. spectral windows
stacked) available in the dataset; ‘FOG %’→ percentage of FOG samples with respect
to the ‘# samples’ value.

Train Validation Test

strategy # samples FOG % # samples FOG % # samples FOG %

feed-forward 15568 16.12 5040 17.38 2656 12.65

recurrent 13648 14.23 5040 17.38 2656 12.65

38

Chapter 4

Architecture and training
parameters

This chapter describes and discusses the DL architectures presented in this thesis.

4.1 1D-ConvNet

This approach constitutes the major contribution of this master thesis since other

presented approaches (i.e. the 1D-ConvLSTM and the 1D-ConvGRU) are its ex-

tensions. The 1D-ConvNet is composed of eight layers: I) an input layer; II) four

convolutional layers; III) two dense layers; and IV) an output layer. According to the

notation defined in Section 2.5, this approach is described as

C(3|16)− C(3|16)− C(3|16)− C(3|16)− F (32)− F (32)− F (1) . (4.1)

Furthermore, following a similar notation than LeCun et al. [73] for describing

the LeNet-5, Figure 4.1 illustrates the architecture of our 1D-ConvNet.

Figure 4.1: Diagram of the 1D-ConvNet’s architecture.

39

4.1.1 Convolutional layers

This subsection described the properties of the convolutional layers implemented in

the 1D-ConvNet model.

Kernel size. The kernel sizes were set to 3 following the intuition that larger pat-

terns in the input would be handled by the network’s depth, rather than the kernels

width. This intuition is illustrated in Figure 4.2.

Figure 4.2: Diagram of the receptive fields structure of a 4-layer ConvNet with kernels
of size 3. In this figure, all circles represent cells of a network with sparse connectivity,
which is only connected to three output cells of the next layer. Therefore, as can be
observed, the input layer being larger than 3, this can still be ‘seen’ by one cell, al-
though not in the first layer. Concretely, it illustrates the effect of depth in ConvNets’
connectivity structures, which permits to extract large and abstract patterns.

Number of convolutional layers and kernels. The number of convolutional

layers and the number of kernels per layer were both set to minimum numbers, 4

and 16, respectively, which allowed the models to train properly (i.e. reaching train

performances above 90%) with and without regularisation.

Activations. As mentioned in Section 2.4, ReLUs are the most widely exploited ac-

tivation function for DL models. Moreover, following the recommendations in Good-

fellow et al. (2016) [53], the activation functions of the convolutional layers were all

implemented by ReLUs.

4.1.2 Hidden dense layers

This subsection described the properties of the hidden dense layers implemented in

the 1D-ConvNet model.

40

Number of dense layers and neurones per layer. The number of hidden dense

layers was fixed to be 2, similarly to the architecture presented by Ordóñez et al. in

2016 [91]. The number of neurones per dense layer was always set to be two times the

number of kernels in the convolutional layers; thus, the number of neurones per layer

in the 1D-ConvNet was configured to be 32. However, the number of dense layers

was fixed to be 2.

Activations. The activation functions were set to be ReLUs, as in the convolutional

layers.

4.1.3 Output layer

This subsection described the properties of the output dense layer implemented in

the 1D-ConvNet model.

Number of neurones. This thesis defines the FOG events detection problem as

a binary classification task, such that FOG instances are labelled as positive values

(i.e. 1), whereas non-FOG instances are labelled as negative values (i.e. -1). This

binary output can be handled by a single neurone connected to all the neurones in

the previous layer. Therefore, the number of neurones in the output layer was one.

Activations. The activation function of this neurone was implemented by a linear

function with weight decay.

4.2 1D-ConvLSTM

This approach implements an 8-layer 1D-ConvLSTM composed by: I) an input layer;

II) four convolutional layers; III) two LSTM layers; and IV) an output layer. Accord-

ing to the notation defined in Section 2.5, this approach is described as

C(3|16)−C(3|16)−C(3|16)−C(3|16)− LSTM(32)− LSTM(32)− F (1) . (4.2)

Furthermore, following a similar notation than LeCun et al. [73] for describing

the LeNet-5, Figure 4.1 illustrates the architecture of our 1D-ConvLSTM.

As mentioned in Section 1.3, this model was an extension of the 1D-ConvNet;

thus, most of its predecessor’s properties were maintained. Concretely, only properties

concerning the model’s new layers were modified. Hereafter these differing properties

concerning the LSTM layers are commented.

41

Figure 4.3: Diagram of the 1D-ConvLSTM’s architecture.

Number of LSTM layers and neurones per layer. The number of LSTM layers

was fixed to be 2 to maximise the model’s resemblance to our original approach for

comparability purposes. Following the same intuition, the number of neurones per

LSTM layer was also set to 32, as in the 1D-ConvNet’s dense layers.

Activations. Dealing with vanishing gradient problem in recurrent DL models is

different than in feed-forward ones. To perform a fear comparison between our feed-

forward and recurrent DL approaches, each model was implemented adopting the best

practices for it. As mentioned in Section 2.1, the literature recommends ReLUs as

the best practice for feed-forward models’ activation functions, however, in recurrent

models the commonly implemented activation function is Tanh [25, 27, 28]. The acti-

vation functions for the LSTM layers were, therefore, set to the Tanh, while its gating

functions were implemented by the hard sigmoid function (i.e. an approximation of

Sigmoid) since it fits perfectly with the gating requirement to retrieve values within

the range [0, 1].

4.3 1D-ConvGRU

This approach implements an 8-layer 1D-ConvGRU composed by: I) an input layer;

II) four convolutional layers; III) two GRU layers; and IV) an output layer. According

to the notation defined in Section 2.5, this approach is described as

C(3|16)− C(3|16)− C(3|16)− C(3|16)−GRU(32)−GRU(32)− F (1) . (4.3)

Furthermore, following a similar notation than LeCun et al. [73] for describing

the LeNet-5, Figure 4.3 illustrates the architecture of our 1D-ConvGRU.

42

Figure 4.4: Diagram of the 1D-ConvGRU’s architecture.

Due to GRUs similarities with LSTMs, all the architectural configurations defined

for LSTMs in Section 4.2 were adopted for implementing the 1D-ConvGRU extension

of our feed-forward approach.

4.4 Structures comparison

Compared to other DL approaches, ConvNets are usually faster to train. These

models, however, are usually composed by large amounts of parameters, which are

concentrated in the last dense layers.

Strategies, as pooling, may reduce the impact of this issue in the transition be-

tween the last convolutional layer and the first dense layer, where the input is flat-

tened, and, thus, the number of layers’ parameters will be proportional to the inputs’

size. However, this problem will prevail between the dense hidden layers, whose

number of parameters is the number of neurones squared.

The number of parameters p in a DL model are calculated according to the fol-

lowing equations:

• Number of parameters of a convolutional layer:

p = cn ∗ kn ∗ ks + kb , (4.4)

where cn is the number of channels in the layer’s input, kn is the number of

kernels, ks is the kernel’s size, and kb is the number of biases, which will match

with the number of kernels.

• Number of parameters of a dense layer:

p = is ∗ nn + nb , (4.5)

43

where is is the size of the flattened layers’ input, nn is the number of neurones,

and nb is the number of biases, which will match with the number of neurones.

• Number of parameters of a gated recurrent layer (i.e. LSTM or GRU):

p = an ∗ ((cn + 1) ∗ oc + o2c) , (4.6)

where an is the number of gating and activation functions in a cell of the layer

(e.g. for an LSTM, this would be 3 Sigmoids and a Tanh, resulting to 4 functions

per cell), cn is the number of channels in the layer’s input, which will match

with the number of neurones, kernels or cells, in the previous layer, and oc is

layer’s channel outputs number.

Table 4.1 presents the details of the number of parameters composing each ap-

proach while specifying the structure properties employed for calculating them. From

it, it can be observed that, as mentioned in the previous sections, most layers com-

posing the 1D-ConvLSTM and the 1D-ConvGRU have identical structures than the

ones in the 1D-ConvNet. The effect of implementing dense layers in a ConvNet with-

out any pooling strategy manifests in the fifth layer of the 1D-ConvNet, where the

number of parameters is calculated on the layers’ input size resulting into a layer with

the 77% of the model’s parameters. From comparing the models’ complexity, it can

be noted that, while the complexity of the connections in the 1D-ConvNet is lower

than its recurrent extensions, these have less to be trained parameters.

44

Table 4.1: Approaches structures and parameters. Columns naming description: ‘1D-
ConvNet’, ‘1D-ConvLSTM’ or ‘1D-ConvGRU’ → approach to which the information
in the columns under this one belongs; ‘Layer’→ layer’s number, according to Figure
4.1, Figure 4.3 and Figure 4.4 for the 1D-ConvNet, the 1D-ConvLSTM and the 1D-
ConvGRU, respectively; ‘Properties’ → layers’ properties affecting the number of
parameters; ‘# Param’→ number of parameters in the ‘Layer’-th layer; ‘cn’→ layer’s
number of input channels in Equation (4.4) and Equation (4.6); ‘kn’ → number of
kernels in Equation (4.4); ‘ks’ → kernels’ size in Equation (4.4); ‘kb’ → number of
kernels’ biases in Equation (4.4); ‘is’ → layer’s input size in Equation (4.5); ‘nn’ →
layer’s number of neurones in Equation (4.5); ‘nb’ → number of neurones’ biases in
Equation (4.5); ‘an’ → number of functions in a layer’s memory block in Equation
(4.6); ‘oc’ → layer’s output number of channels in Equation (4.6); and row ‘Total’ →
total number of parameters of the approach.

1D-ConvNet 1D-ConvLSTM 1D-ConvGRU

Layer Properties # Param Properties # Param Properties # Param

1

cn = 1

880

cn = 1

880

cn = 1

880
kn = 16 kn = 16 kn = 16
ks = 3× 18 ks = 3× 18 ks = 3× 18
kb = 16 kb = 16 kb = 16

2

cn = 16

880

cn = 1

880

cn = 1

880
kn = 16 kn = 16 kn = 16
ks = 3× 18 ks = 3× 18 ks = 3× 18
kb = 16 kb = 16 kb = 16

3

cn = 16

880

cn = 1

880

cn = 1

880
kn = 16 kn = 16 kn = 16
ks = 3× 18 ks = 3× 18 ks = 3× 18
kb = 16 kb = 16 kb = 16

4

cn = 16

880

cn = 1

880

cn = 1

880
kn = 16 kn = 16 kn = 16
ks = 3× 18 ks = 3× 18 ks = 3× 18
kb = 16 kb = 16 kb = 16

5
is = 16× 56

28704
an = 4

6272
an = 3

4704nn = 32 cn = 16 cn = 16
nb = 32 oc = 32 oc = 32

6
is = 32

1056
an = 4

8320
an = 3

6240nn = 32 cn = 32 cn = 32
nb = 32 oc = 32 oc = 32

7
is = 32

33
is = 32

33
is = 32

33nn = 1 nn = 1 nn = 1
nb = 1 nb = 1 nb = 1

Total 37121 17857 14209

45

Chapter 5

Experiments

5.1 Implementation and technologies

This section describes the software and hardware used for deploying the experiments

of the studies conducted within this thesis.

5.1.1 Machines’ specs

The experiments in this work were executed using the five following machines:

• PC-1

– CPU → Intel Core i7-4770 (8 cores at 3.40 GHz)

– Memory → 16 GB DDR3

– GPU → GTX970 (4 GB DDR5)

– Operative system (OS) → Linux

– Dist → Ubuntu 14.04

• PC-2

– CPU → Intel Core i7-7700 (8 cores at 3.60 GHz)

– Memory → 32 GB DDR3

– GPU → GTX 1060 (6GB DDR5)

– OS → Linux

– Dist → Ubuntu 14.04

• PC-3

46

– CPU → Intel Core i7-7700 (8 cores at 3.60 GHz)

– Memory → 32 GB DDR3

– GPU → GTX 1060 (6GB DDR5)

– OS → Linux

– Dist → Ubuntu 14.04

• PC-4

– CPU → Intel Core i7-4770 (8 cores at 3.40 GHz)

– Memory → 16 GB DDR3

– OS → Microsoft Windows

– Dist → Windows 7

• PC-5

– CPU → Intel Core i7-7700 (8 cores at 3.60 GHz)

– Memory → 32 GB DDR3

– GPU → GTX 1060 (6GB DDR5)

– OS → Microsoft Windows

– Dist → Windows 10

From these machines, PC-1, PC-2 and PC-3 were employed for training the DL

models, while PC-4 and PC-5 were devoted to the shallow ML algorithms.

5.1.2 Programming tools

Technologies adopted for training DL models for FOG detection. The code

for training the DL models implemented was written in Python (version 3.4), using

Keras library (version 1.2.2) [26] running on top of TensorFlow (version tensorflow-

gpu 1.0.1) [10]. Furthermore, the code implemented for the training and processing

algorithms is publicly available at [8].

Technologies adopted for training shallow ML models for FOG detection.

The code for training the shallow ML models implemented was written in Matlab

(version R2017a), using its Statistics and Machine Learning Toolbox.

47

5.2 DL training and evaluation settings

This section explains the configurations of the DL training employed.

5.2.1 Weights initialisation

As mentioned in Section 2.4, several different approaches may function for our prob-

lem.

For all the DL models trained, their weights were, thus, initialized using the

method presented by Glorot et al. in 2010 [51], which, indeed, allowed the model to

learn the FOG representations successfully in the data.

5.2.2 Activations

As discussed in Chapter 4, the activation functions of the models were set per each

layer as follows:

• Convolutional layers → ReLU.

• Recurrent layers → Tanh for the activations and hard sigmoid for the gates.

• Hidden dense layers → ReLU.

• Output layer → linear function, for providing the hinge loss with an expressive

output representation.

5.2.3 Error loss

Since FOG detection was addressed as a binary classification task, hinge loss (5.1)

algorithm was implemented as the error loss function. Hinge loss algorithm is a loss

error method specialised for binary classification problems, which is defined as

lh = mean(max(0, 1− ytrue ∗ ypred)) , (5.1)

where ytrue are the real labels of the data, which can either be -1 or 1, while ypred are

the model label predictions which can adopt real values in the range [−∞,+∞].

However, the class imbalance in the training data prevented the model from learn-

ing strong FOG representations. Therefore, a balanced extension of the hinge loss

48

function was considered. This function was defined as

l+b = max(0, 1− y+
true ∗ ypred) ∗ (1− ρ) (5.2)

l−b = max(0, 1− y−true ∗ ypred) ∗ ρ (5.3)

lb = mean(l+b + l−b) , (5.4)

where y+
true defines the real positive samples in the data while y−true defines the negative

ones, ρ is the prior of FOG samples in the training data (i.e. the percentage of FOG

samples in the training dataset) and, thus, 1− ρ is the prior of non-FOG samples in

the training data.

This class balancing strategy permitted to train our models properly, however, it

overweighted the FOG labelled samples leading to models with low accuracy. The

Equation 5.4 was, thus, redefined to regulate the models’ attention on the specificity

metric while still considering the class imbalance factor on the data. Concretely, the

weighted hinge loss function implemented was defined as

lw = mean(l+b ∗ w−1 + l−b ∗ w) , (5.5)

where w is a class weighting coefficient and 1 < w < (1−ρ)
ρ

.

This new weighting coefficient was included in the hyperparameters tuning explo-

ration. From which, in the presented approaches this parameter w was set to 1.5 for

the 1D-ConvNet, 2 for the 1D-ConvLSTM, and 1.5 for the 1D-ConvGRU.

Furthermore, gradient clipping with clip value set to 1 was implemented to con-

trol the exploding gradient phenomenon, such as cliffs, while training the recurrent

extensions models.

5.2.4 Optimiser

Adam [66] has been widely implemented in several DL approaches [143, 71, 68, 147,

56], moreover, Goodfellow et al. in 2016 [53] recommended Adam as a good optimiser

for DL models. The models presented were, thus, trained via backpropagation and

Adam algorithm as the optimisation method.

The learning rate for training the models of the reported results was set to 5 ·
10−5/batch− size.

5.2.5 Minibatch training

According to Goodfellow et al. (2016) [53], generalisation error is often best for a

batch size of 1. However, this strategy is time-consuming. Therefore, the DL models

were trained by minibatches of 16 samples.

49

5.2.6 Regularization

The 1D-ConvNets trained initially were prone to overfit on the training data; thus,

the following strategies were implemented:

1. Dropout [129] with the probability parameter set to 0.5 for the convolutional

layers and 0.25 for the hidden dense ones.

2. L2-norm weight regularisation with the penalty parameter set to 10−5, in all

layers except the output layer. This last one was trained using the L2-norm

weight regularisation, but, with 10−2 as penalty parameter.

3. Early stopping such that convergence was redefined to take place when a model’s

best metric increased less than a threshold during a large number of epochs.

Concretely, the metric evaluated within this process was the minimum between

the GM of the Training-train sensitivity and the Training-train specificity, and

the GM of the Training-validation sensitivity and the Training-validation speci-

ficity, while the change threshold was set to 0.005 and the number epochs to

wait before determining convergence was set to 300. Therefore, the model cor-

responding to the epoch with highest metric value was set as the final model;

however, only those that trained for at least 100 epochs before converging were

further considered to control premature convergence.

4. Data augmentation which increased the Training-train dataset size by a factor

of four, while introducing coherent stochastic noise in the data.

When implementing our approach’s extensions, it was noted that none of the

recurrent could train with all these regularisation strategies. From the regularization

strategies implemented for training the feed-forward models, the 1D-ConvLSTM and

the 1D-ConvGRU only implemented the following: I) L2 norm weight regularization

with the penalty parameter set to 10−2 only in the model’s output layer; II) early

stopping, but raising the number of epochs for the convergence criteria to 700 and

1000 for the 1D-ConvGRU and the 1D-ConvLSTM, respectively; and III) the same

data augmentation strategies than the feed-forward models.

5.2.7 Training data feeding strategies

This subsection is devoted to describing the strategies designed for training our DL

approaches.

50

Feed-forward feeding strategy. This strategy is presented in Algorithm 2. This

algorithm first generated the random parameters for the data augmentation strategies.

These parameters were the starting random shifts, which were generated one for

each pair file and augmentation iteration, and the random rotations, which were

generated 1000× augmentation factor random rotation matrices, since generating a

different rotation for each sample would be inefficient. Next, the algorithm iterated

augmentation factor times over the data, augmenting it differently. Within each

iteration the algorithm performed a stochastic strategy to train samples in an absolute

random order.

Algorithm 2 Feed-forward feeding strategy

1: procedure train epoch(model,data) . Feeds the model to train one epoch
2: num files← COUNT FILES(data)
3: augment factor ← 4
4: num rotations← 1000× augment factor
5: augment shifts = GET SHIFTS(num files,augment factor)
6: augment rotations = GET ROTATIONS(num rotations)
7: batch← []
8: for i = 1, i++, i < augment factor do
9: shift← augment shifts[i]

10: rotation← RANDOM SELECT(augment rotations)
11: new data = AUGMENTATION(data,shift,rotate)
12: windowed data = WINDOW(new data)
13: sample list = SWS(windowed data) . spectral window stacking
14: sample list = SHUFFLE(sample list)
15: for <sample in sample list> do
16: APPEND(batch,sample)
17: if SIZE(batch) = 16 then
18: TRAIN(model,batch)
19: batch← []
20: end if
21: end for
22: end for
23: return model . The model has trained one epoch
24: end procedure

Recurrent feeding strategy. The recurrent version of the feeding strategy slightly

differs from the feed-forward one due to the need of maintaining temporal dependence

between consecutive samples being feed. As before, this process is presented in Al-

gorithm 3, while the steps composing it are hereafter outlined. This algorithm first

51

generated the random parameters for the data augmentation strategies. These pa-

rameters were the starting random shifts and random rotations, which were both

generated one for each pair file and augmentation iteration, since files will be feed in

a row and should, thus, have the same augmentation operations applied. Next, the

algorithm iterated augmentation factor times over the data, augmenting it differ-

ently. Within each iteration, the algorithm performed a stochastic strategy to train

files in random order. Furthermore, after each file is feed to the model for training,

the recurrent memories of it are reset before feeding the next file.

Algorithm 3 Recurrent feeding strategy

1: procedure train epoch(model,data) . Feeds the model to train one epoch
2: data = SHUFFLE(data)
3: for <file in data> do
4: size← SIZE(file)
5: augment factor ← 4
6: augment shifts = GET SHIFTS(size,augment factor)
7: augment rotations = GET ROTATIONS(size,augment factor)
8: for i = 1, i++, i < augment factor do
9: shift← augment shifts[i]

10: rotation← augment rotations[i]
11: new data = AUGMENTATION(file,shift,rotate)
12: windowed data = WINDOW(new data)
13: sample list = SWS(windowed data) . Spectral Window Stacking
14: batch← []
15: for <sample in sample list> do
16: APPEND(batch,sample)
17: if SIZE(batch) = 16 then
18: TRAIN(model,batch)
19: batch← []
20: end if
21: end for
22: RESET(model) . Reset model’s memories
23: end for
24: end for
25: return model . The model has trained one epoch
26: end procedure

5.2.8 Evaluation data feeding strategies

The evaluation for the DL approaches, which is deeply reviewed in Section 5.3, was

performed patient-wisely without data augmentation strategies or dropout. There-

52

fore, for simplicity, all DL models were evaluated using the same feeding strategy

which is presented in Algorithm 4, which was executed once per patient, setting as

the algorithm’s second argument patient to a patient’s data (i.e. a list of files of sig-

nals). This strategy was implemented by the following steps for each patient. First,

the algorithm iterates over the patient’s files and, within each iteration, the algorithm

evaluates the data in batches and accumulates the results, which will be later em-

ployed for calculating the model’s metrics. Furthermore, after each file is fed to the

model, its recurrent memories of it are reset before feeding the next file; otherwise,

the process continues normally.

Algorithm 4 Evaluation feeding strategy

1: procedure evaluate model(model,patient) . Feeds one patient’s data to
evaluate

2: patient eval← []
3: for <file in patient> do
4: windowed data = WINDOW(file)
5: sample list = SWS(windowed data) . Spectral Window Stacking
6: batch← []
7: for <sample in sample list> do
8: APPEND(batch,sample)
9: if SIZE(batch) = 16 then

10: batch eval← EVALUATE(model,batch)
11: APPEND(patient eval,batch eval)
12: batch← []
13: end if
14: end for
15: if IS RECURRENT(model) then
16: RESET(model)
17: end if
18: end for
19: return patient eval . Patient’s evaluation
20: end procedure

This feeding strategy was employed for both, validation and testing processes.

Note that compared to the feed-forward strategy more data is lost due to restricting

that in a batch data should belong to the same patient. However, since the evaluation

was performed in batches, to obtain the algorithm performance per patient, it was

necessary to implement this constraint for all DL models’ evaluation.

53

5.3 Evaluation

As already introduced in Subsection 5.2.8, the evaluation of all algorithms imple-

mented was performed per patient. This strategy implied that the metrics, such as

the GM between sensitivity and specificity, of the models were computed for each

patient’s data independently, and, finally, averaged among all patients’ results. The

motivation of this evaluation approach is that models that learn only the patterns

of some patients may compensate their performance in others, hence outlier patients

will have a similar negative effect in all learning algorithms. However, models will

be unable to compensate their performance when representing all patients wrong.

Concretely, models that can distinguish FOG from non-FOG for a particular patient

can reach a score greater than 0 for the GM between sensitivity and specificity for

that patient.

Following the trend in the related literature [79, 141, 31, 110], the metric employed

for selecting the models in this thesis was the average among the patients’ GM between

the sensitivity and specificity. Other metrics were computed following the same per

patient intuition, and are reported in Chapter 6 for comparability purposes.

This study aimed to outperform the state-of-the-art for automatic FOG detection

using DL while providing other researchers with a complete and reproducible basis

work from where to start future studies. To ensure these characteristics, all procedures

in this work were neatly and justly performed. The models were trained with several

hundreds of hyperparameter’s configurations until reaching the presented ones. The

approaches implemented were trained uniquely with Training-train data and assessed

with the Training-validation data before being tested. However, the models were only

tested once, and all at the same time. Their results were ranked according to the

training selection criteria for the early stopping, which was the minimum between the

GM of sensitivity and specificity, for train and validation. From the overall results,

only the top-5 models according to these criteria were tested, however, only the best

training model will be used for comparison and considered for discussion throughout

this thesis, while the remaining 4 models were only tested and reported to ensure

robustness and reproducibility of our work.

The evaluation strategy that was employed for in this study is hereafter outlined,

while in Chapter 6, the results and discussing derived from applying this strategy are

presented.

54

Comparison among DL approaches. To report the performances achieved by

1D-ConvNet and its recurrent extensions, and compare them.

Comparison among shallow ML approaches. To report the performances ob-

tained by reproductions of other authors’ work when being trained using the most

suitable shallow ML algorithms, and compare them to the results retrieved by our

DL models.

Comparison between DL and shallow ML approaches. To compare and dis-

cuss the results reported from our DL approaches and our reproduction of the state-

of-the-art strategies used for training shallow ML algorithms.

5.4 Reproduction of the state-of-the-art approaches

This section describes and discusses the feature extractions, and their settings repro-

duced within this thesis.

5.4.1 Data representation and preprocessing for reproducing
the approaches

This subsection discusses the preprocessing and representation techniques and set-

tings implemented for reproducing the state-of-the-art approaches.

As mentioned in Section 1.5, many of these authors employed different window

sizes, labelling strategies, and evaluation methods. The data they employed were,

however, different than the one used for this study; thus, to perform a fair compari-

son, these characteristics should be optimised as hyperparameters for each approach.

Rodŕıguez et al. [31] replicated these same approaches on a subset of 6 patients of the

dataset being employed. In their study, moreover, these approaches were compared

using different window sizes on the data sampled at 40 Hz, by which high validation

performances were achieved. According to Rodŕıguez et al. [31], furthermore, there

were no significant differences when changing the window’s size. Note that the best

performances reported by Rodŕıguez et al. [31] were using window sizes of 0.8 s and

1.6 s, however, according to Moore et al. [80] the window’s size should be higher than

2.5 s. Thus, the window size was set to 3.2 s, to keep in concordance with the litera-

ture, while maintaining the others authors’ approaches as close as their original work

as possible, since they all (except Tripoliti et al. in 2013 [141]) employed windows

larger than 2 s for FOG detection.

55

The data preprocessing strategies employed were the same that for preparing the

data for training the DL models, as described in Section 3.3. The only differences for

these feature extraction methods and later training the shallow ML algorithms were:

1. The data were sampled at 40 Hz, instead of 50 Hz.

2. The acceleration signals data were filtered using a 2nd order lowpass Butter-

worth filter with the cut-off set to 15 Hz and its initial conditions handled by

setting them to the mean of the signal.

3. The gyroscope signals data were filtered using a 2nd order highpass Butterworth

filter with the cut-off set to 0.2 Hz and its initial conditions handled by setting

them to the mean of the signal.

4. The magnetometer signals data were discarded since none of the reproduced

approaches employed these signals.

5. Since these handcrafted feature extraction methods worked without any data

augmentation strategy; data were directly windowed using windows of 3.2 s and

50% of window overlapping to avoid losing interwindow information due to the

splitting points.

5.4.2 Implementation of the feature extractions

Although some of the following authors presented extensions of their work, these were

not taken into account due to the ambiguity of their performances achieved in their

literature sources (e.g. Mazilu et al. in 2013 [78] and Mazilu et al. in 2016 [77]).

Notation for the feature extraction methods. Let the following notation be

introduced and later adopted for describing the feature extraction operations in this

section.

• Accelerometer signals from the current window being analysed → acc or acct,

hence equations including the acct−1 term will necessarily refer to the current

window as acct rather than acc.

• Accelerometer signals from the previous window to the current one being anal-

ysed → acct−1.

• Gyroscope signals from the current window being analysed → gyro.

56

• Accelerometer X-axis signal from the current window being analysed → accx

or accxt.

• Accelerometer X-axis signal from the previous window to the current one being

analysed → accx(t−1).

• Accelerometer Y-axis signal from the current window being analysed → accy

or accyt.

• Accelerometer Y-axis signal from the previous window to the current one being

analysed → accy(t−1).

• Accelerometer Z-axis signal from the current window being analysed → accz

or acczt.

• Accelerometer Z-axis signal from the previous window to the current one being

analysed → accz(t−1).

• Gyroscope X-axis signal from the current window being analysed → gyrox.

• Gyroscope Y-axis signal from the current window being analysed → gyroy.

• Gyroscope Z-axis signal from the current window being analysed → gyroz.

The following paragraphs detail the features composing the approaches reproduced

in this work. These approaches extract the described features for each window in the

data, which were arranged as described in Subsection 5.4.1.

MBFA presented by Bächlin et al. in 2009 [16]. This feature extraction

was applied for each window in the data, specifically using the acc. The features

composing the MBFA are

1. The FIy, which corresponds to the FI of the accy, defined as

FIy =
FBy

LBy

, (5.6)

where FBy refers to the FB of the accy and LBy is the LB of the accy. Con-

cretely, the FBy is defined as

FBy =
8∑

fi=3

A2
y,fi

, (5.7)

57

where, using a similar notation that the one employed by Rodŕıguez et al.

(2017) [110], fi is the iterator over the frequencies represented, while 8 is the

upper frequency amplitude bound, which together with the initial value of fi

define the band to be summed. Concretely, in Equation (5.7), the amplitude

of all harmonics in spectral representation of the accy within the frequencies

rage [0.5 Hz, 3 Hz] are summed. The Ay vector is composed of the harmonic

amplitudes obtained by applying the FFT to accy, performing its absolute value

and keeping only its first symmetric half. Thus, the elements of the amplitude

vector Ay are defined by

Ay,fi = 2 ∗ |AFy,fi | , (5.8)

where AFy,fi is the harmonic corresponding to frequency fi ∈
[
0, fN

2

]
, where fN

is the sampling frequency, and AF
y is the vector of the complex values corre-

sponding to the harmonics from applying the FFT function to accy, which is

defined as AF
y = FFT (accy).

The LBy from Equation (5.6) is defined as

LBy =
3∑

fi=0.5

A2
y,fi

. (5.9)

2. The PI of the accy defined as

PIy =

fN
2∑

fi=f2

A2
yi , (5.10)

where f2 is the fist frequency after the continuous component.

Online FOG detection presented by Mazilu et al. in 2012 [79]. This feature

extraction was applied for each window in the data, specifically using the acc signals.

The features composing this approach are

1. The FIy implemented as in the MBFA.

2. The PIy implemented as in the MBFA.

3. The mean of the accx.

4. The mean of the accy.

5. The mean of the accz.

58

6. The ST of the accx.

7. The ST of the accy.

8. The ST of the accz.

9. The variance (VAR) of the accx.

10. The VAR of the accy.

11. The VAR of the accz.

12. The entropy S of the amplitudes of accy. The detailed implementation em-

ployed is described in Gonzalez et al. [52]. Concretely, the entropy of the

amplitudes of accy was defined as

S(Ay) = −

fN
2∑

fi=f2

h(Ay) ∗ log2(h(Ay)) , (5.11)

where h is the histogram function and log2 is the logarithm function with basis

equals 2.

13. The energy of accx defined as

Ex =
2

fN
∗

fN
2∑

fi=f2

A2
xi , (5.12)

where Ax is defined as in Equation (5.8), but using the accx instead.

14. The energy of accy defined as in Equation (5.12).

15. The energy of accz defined as in Equation (5.12).

Four-stage FOG detection presented by Tripoliti et al. in 2013 [141]. This

feature extraction was applied for each window in the data using the acc and gyro.

The features composing this approach are

1. The entropy of the amplitudes of accx, defined as in Equation (5.11).

2. The entropy of the amplitudes of accy.

3. The entropy of the amplitudes of accz.

59

4. The entropy of the amplitudes of gyrox.

5. The entropy of the amplitudes of gyroy.

6. The entropy of the amplitudes of gyroz.

Uncontrolled environments FOG detection presented by Rodŕıguez et al.

in 2016 [31]. This feature extraction, which was also used throughout the study

presented by Rodŕıguez et al. in 2017 [110], was applied for each window in the data

using the acct and the acct−1. The features composing this approach are

1. The mean of the accx.

2. The mean of the accy.

3. The mean of the accz.

4. The ST of the accx.

5. The ST of the accy.

6. The ST of the accz.

7. The difference between Item 1 and Item 3.

8. The difference between Item 2 and Item 7.

9. The difference between Item 1 and the same operation but on accx(t−1).

10. The difference between Item 7 and the same operation but on accx(t−1) and

accz(t−1).

11. The difference between Item 8 and the same operation but on accx(t−1), accz(t−1)

and accy(t−1).

12. The skewness of accx, defined as the third central moment of the signal divided

by the cube of its ST.

13. The skewness of accyt.

14. The skewness of acczt.

60

15. The skewness of the acc’s L2-norm in the spectral domain defined as

SkewL2 = Skew(‖acc‖2) = Skew(
√
acc2x + acc2y + acc2z) , (5.13)

where Skew is the skewness function.

16. The skewness of the LB amplitudes defined as

SkewLB = Skew([A2
y,0.5, . . . , A

2
y,3]) . (5.14)

17. The skewness of the FB amplitudes defined as

SkewFB = Skew([A2
y,3, . . . , A

2
y,8]) . (5.15)

18. The skewness of both bands, the LB and the FB amplitudes defined as

SkewFLB = Skew([A
2
y,0.5, . . . , A

2
y,8]) . (5.16)

19. The ST of the posture transition band (PT), which considers frequencies from

0.1 to 0.68 Hz.

20. The ST of the FB amplitudes.

21. The ST of the LB amplitudes.

22. The ST of the FB and LB amplitudes (i.e. from 0.5 to 8 Hz).

23. The ST of amplitudes corresponding to frequencies above the LB; thus, the

range considered is from 8 to fN
2

Hz.

24. The frequency of the centre of mass, defined as a weighted sum of frequencies,

where each frequency is weighted by its amplitude using the accy.

25. The correlation coefficient between accx and accy.

26. The correlation coefficient between accx and accz.

27. The correlation coefficient between accy and accz.

28. The frequency with maximum amplitude in accy.

29. The second frequency with maximum amplitude in accy.

61

30. The first value of applying the principal components analysis’ (PCA) of the

spectral representation of accy.

31. The second value of applying the PCA as defined in Item 30. Note that, only

the first two values from the PCA were employed following the intuition from

the ‘elbow rule’. The ‘elbow rule’ establishes that the information gain of using

the n-th eigenvector of the PCA decomposition should be significantly greater

than later taking the n + 1-th one. Thus, the process is interrupted when an

‘elbow’ appears in the information gain curve.

5.5 Shallow ML experiments

This section explains the shallow ML algorithms and the training and evaluation

strategies implemented for them.

5.5.1 Shallow ML algorithms implemented

On the one hand, our approaches implement some of the most novelty techniques

in ML, and, moreover, were laboriously designed and tuned. Whereas, on the other

hand, most of the shallow ML algorithms reviewed in the automatic FOG detection’s

state-of-the-art are unrecommended algorithms for binary classification according to

Caruana et al. in 2006 [23]. More precisely, in their previous works:

• Bächlin et al.’s (2009) [16] approach used only threshold-based techniques for

solving the binary classification task.

• Mazilu et al.’s (2012) [79] approach presents results using several algorithms,

such as RF and AdaBoost, which indeed according to Caruana et al. in 2006

[23] may be a powerful algorithm on this task. However, they include results

from algorithms such as K-NN and NB, which are known to be weak for binary

classification [23].

• Tripoliti et al.’s (2013) [141] approach presents results using several algorithms,

from which only RF, according to Caruana et al. in 2006 [23], may be a powerful

algorithm on this task.

• Rodŕıguez et al.’s (2016) [31] approach presents results using SVMs. However,

in the comparison section, only RF is another powerful algorithm for binary

classification according to Caruana et al. in 2006 [23], while K-NN, NB and

62

logistic regression are weak ones; moreover, logistic regression was not even

implemented in the original sources of the other feature extraction methods.

To perform a fair comparison between the state-of-the-art for FOG detection and

our approaches, the feature extractions were reproduced and used for training strong

classifiers for two-class problems. As mentioned in Section 1.3, the shallow ML al-

gorithms implemented were the tree bagging [22], the AdaBoost [42], the LogitBoost

[43], the RUSBoost [126], the RobustBoost [41] and the SVM [30]. The motivation for

selecting these algorithms is hereafter discussed while presenting the hyperparame-

ters considered for the exploration and the final configurations chosen for each feature

extraction method.

Tree bagging described in Breiman et al. (1996) [22]. This ML algorithm

trains an ensemble of decision trees using subsets from the training data, which are

generated by sampling N instances with replacement, where N is the number of

samples in the training set. The prediction is performed by majority voting from all

the trees in the ensemble.

The algorithm’s hyperparameters’ were tuned independently for each feature ex-

traction by performing an exhaustive exploration considering the following values for

each parameter:

1. Number of trees: 128, 256, 512 and 1024.

2. Tree shapes:

• Decision stumps (i.e. one level decision trees).

• Decision trees with minimum leaf size set to 3.

• Decision trees with minimum leaf size set to 5% of training data.

• Decision trees with minimum leaf size set to 10% of training data.

The implemented hyperparameters’ configuration implemented for this algorithm are

shown in Table 5.1.

AdaBoost described in Freund et al. (1995) [42], using decision trees as

weak learners. This algorithm trains an ensemble of decision trees sequentially,

such that the new trees aggregated to the ensemble are focused on the previously

misclassified samples. Finally, this algorithm will predict the label for new samples by

performing a weighted average on over all the predictions of the trees in the ensemble.

63

Table 5.1: Tree bagging configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; and ‘tree type’ → properties
of the trees implemented. The values in the column ‘tree type’ may adopt one of
the following values: ‘tree’ → traditional decision tree; ‘min x’ → tree composed
by leafs with minimum size x; or ‘max x’ → tree of maximum depth x, note that
‘max 1’ will be the decision stump. Additionally, next to the ‘min x’ or ‘max x’
values, there might appear a percentage % symbol, which indicates that the value of
x is a percentage over the training data.

Feature extraction method # Trees Tree type

Bächlin et al. (2009) [16] 1024 min 3

Mazilu et al.’s (2012) [79] 1024 min 5%

Tripoliti et al.’s (2013) [141] 1024 min 5%

Rodŕıguez et al.’s (2016) [31] 1024 min 5%

This algorithm was chosen since it has been recognised as a strong approach for binary

classification tasks [23].

The algorithm’s hyperparameters’ were tuned independently for each feature ex-

traction by performing an exhaustive exploration considering the following values for

each parameter:

1. Number of trees: 128, 256, 512 and 1024.

2. Tree shapes:

• Decision stumps (i.e. one level decision trees).

• Decision trees with minimum leaf size set to 3.

• Decision trees with minimum leaf size set to 5% of training data.

• Decision trees with minimum leaf size set to 10% of training data.

3. Learning rate: 0.1, 0.5 and 1.

The implemented hyperparameters’ configuration implemented for this algorithm are

shown in Table 5.2.

LogitBoost described in Friedman et al. (2000) [43], using decision trees as

weak learners. This algorithm extends AdaBoost by reducing the weight assigned

to badly misclassified samples; thus, it may outperform AdaBoost in classifying poorly

separable data.

64

Table 5.2: AdaBoost configurations. Columns naming description: ‘# trees’→ num-
ber of decision trees forming the ensemble method; ‘tree type’ → properties of the
trees implemented; and ‘learning rate’→ the learning rate for training the algorithm,
note that values lower than 1 may have an shrinkage effect. The values in the col-
umn ‘tree type’ may adopt one of the following values: ‘tree’ → traditional decision
tree; ‘min x’ → tree composed by leafs with minimum size x; or ‘max x’ → tree of
maximum depth x, note that ‘max 1’ will be the decision stump. Additionally, next
to the ‘min x’ or ‘max x’ values, there might appear a percentage % symbol, which
indicates that the value of x is a percentage over the training data.

Feature extraction method # Trees Tree type Learning rate

Bächlin et al. (2009) [16] 1024 min 3 0.1

Mazilu et al.’s (2012) [79] 1024 min 3 0.1

Tripoliti et al.’s (2013) [141] 1024 min 3 0.1

Rodŕıguez et al.’s (2016) [31] 1024 min 10% 0.1

The algorithm’s hyperparameters’ were tuned independently for each feature ex-

traction by performing an exhaustive exploration considering the following values for

each parameter:

1. Number of trees: 128, 256, 512 and 1024.

2. Tree shapes:

• Decision stumps (i.e. one level decision trees).

• Decision trees with minimum leaf size set to 3.

• Decision trees with minimum leaf size set to 5% of training data.

• Decision trees with minimum leaf size set to 10% of training data.

3. Learning rate: 0.1, 0.5 and 1.

The implemented hyperparameters’ configuration implemented for this algorithm are

shown in Table 5.3.

RUSBoost [126], using decision trees as weak learners. This algorithm ex-

tends AdaBoost by training the learners with class balanced subsets of the training

data; thus, it may outperform AdaBoost in classifying class imbalance data.

The algorithm’s hyperparameters’ were tuned independently for each feature ex-

traction by performing an exhaustive exploration considering the following values for

each parameter:

65

Table 5.3: LogitBoost configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; ‘tree type’→ properties of the
trees implemented; and ‘learning rate’→ the learning rate for training the algorithm.
The values in the column ‘tree type’ may adopt one of the following values: ‘tree’ →
traditional decision tree; ‘min x’ → tree composed by leafs with minimum size x; or
‘max x’ → tree of maximum depth x, note that ‘max 1’ will be the decision stump.
Additionally, next to the ‘min x’ or ‘max x’ values, there might appear a percentage
% symbol, which indicates that the value of x is a percentage over the training data.

Feature extraction method # Trees Tree type Learning rate

Bächlin et al. (2009) [16] 1024 min 3 0.1

Mazilu et al.’s (2012) [79] 1024 min 5% 0.1

Tripoliti et al.’s (2013) [141] 1024 min 5% 0.1

Rodŕıguez et al.’s (2016) [31] 1024 min 5% 0.1

1. Number of trees: 128, 256, 512 and 1024.

2. Tree shapes:

• Decision stumps (i.e. one level decision trees).

• Decision trees with minimum leaf size set to 3.

• Decision trees with minimum leaf size set to 5% of training data.

• Decision trees with minimum leaf size set to 10% of training data.

3. Learning rate: 0.1, 0.5 and 1.

The implemented hyperparameters’ configuration implemented for this algorithm are

shown in Table 5.4.

RobustBoost [41], using decision trees as weak learners. The traditional

AdaBoost focuses each iteration on classifying previously misclassified samples. This

behaviour may lower the average accuracy of the classifier if there are incorrect labels

in the data. The RobustBoost algorithm extends AdaBoost by maximising the num-

ber of samples undoubtedly (i.e. above a certain threshold) well classified, instead

of minimising the models’ train error. Furthermore, this algorithm allows the usage

of an error tolerance, which is used to figure optimal margins and prevent it from

overfitting.

66

Table 5.4: RUSBoost configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; ‘tree type’→ properties of the
trees implemented; and ‘learning rate’→ the learning rate for training the algorithm.
The values in the column ‘tree type’ may adopt one of the following values: ‘tree’ →
traditional decision tree; ‘min x’ → tree composed by leafs with minimum size x; or
‘max x’ → tree of maximum depth x, note that ‘max 1’ will be the decision stump.
Additionally, next to the ‘min x’ or ‘max x’ values, there might appear a percentage
% symbol, which indicates that the value of x is a percentage over the training data.

Feature extraction method # Trees Tree type Learning rate

Bächlin et al. (2009) [16] 1024 max 1 0.1

Mazilu et al.’s (2012) [79] 1024 max 1 0.1

Tripoliti et al.’s (2013) [141] 1024 max 1 0.1

Rodŕıguez et al.’s (2016) [31] 1024 max 1 0.1

The algorithm’s hyperparameters’ were tuned independently for each feature ex-

traction by performing an exhaustive exploration considering the following values for

each parameter:

1. Number of trees: 128, 256, 512 and 1024.

2. Tree shapes:

• Decision stumps (i.e. one level decision trees).

• Decision trees with minimum leaf size set to 3.

• Decision trees with minimum leaf size set to 5% of training data.

• Decision trees with minimum leaf size set to 10% of training data.

3. Error goal: 0.1, 0.05 and 0.1.

The implemented hyperparameters’ configuration implemented for this algorithm are

shown in Table 5.5.

SVM [30], using the radial basis function (RBF) kernel [144] (SVM-RBF).

SVMs are a a powerful shallow ML algorithm, specially in binary classification tasks.

SVMs use the ‘kernel trick’, which implies to switch the inner product of the data

(xTi xj) for a kernel K, which is defined as K(xi,xj) = φ(xi)
Tφ(xj). Concretely, the

kernel implemented was the RBF kernel, which is defined asK(xi,xj) = exp (
−‖xi−xj‖2

σ2)

67

Table 5.5: RobustBoost configurations. Columns naming description: ‘# trees’ →
number of decision trees forming the ensemble method; ‘tree type’ → properties of
the trees implemented; and ‘error goal’ → the error tolerance percentage by which
the algorithm will stop training and, thus, end with larger confidence margins. The
values in the column ‘tree type’ may adopt one of the following values: ‘tree’ →
traditional decision tree; ‘min x’ → tree composed by leafs with minimum size x; or
‘max x’ → tree of maximum depth x, note that ‘max 1’ will be the decision stump.
Additionally, next to the ‘min x’ or ‘max x’ values, there might appear a percentage
% symbol, which indicates that the value of x is a percentage over the training data.

Feature extraction method # Trees Tree type Error goal

Bächlin et al. (2009) [16] 1024 min 3 5

Mazilu et al.’s (2012) [79] 1024 min 5% 10

Tripoliti et al.’s (2013) [141] 1024 min 3 5

Rodŕıguez et al.’s (2016) [31] 1024 min 10% 5

or K(xi,xj) = exp (γ(−‖xi − xj‖2)), which are equivalent notations. Therefore, the

SVM-RBF was implemented as

maximise: W (ν) =
n∑
i=1

νi −
1

2

n∑
i=1

n∑
j=1

νiνjyiyjK(xi,xj) , (5.17)

subject to:
n∑
i=1

νiyi = 0, and 0 ≤ νi ≤ λ ∀i ,

where νi are the Lagrange multiplers and λ is a scalar value to trade-off between the

empirical error and the margin.

The algorithm’s hyperparameters’ were tuned independently for each feature ex-

traction by performing an exhaustive exploration considering the following values for

each parameter:

1. λ: 10−3, 10−2, 10−1, 1, 101, 102 and 103.

2. γ: 10−3, 10−2, 10−1, 1, 101, 102 and 103.

The implemented hyperparameters’ configuration implemented for this algorithm are

shown in Table 5.6.

5.5.2 Shallow ML training and evaluation

The shallow ML algorithms implemented were tuned by performing an exhaustive

hyperparameters exploration on the configurations, as discussed in Subsection 5.5.1.

68

Table 5.6: SVM-RBF configurations. Columns naming description: ‘# SV’→ number
of support vectors composing the model.

Feature extraction method λ γ # SV

Bächlin et al. (2009) [16] 103 103 18873

Mazilu et al.’s (2012) [79] 102 10−3 19707

Tripoliti et al.’s (2013) [141] 103 1 17258

Rodŕıguez et al.’s (2016) [31] 10 10−1 15947

Concretely, the training strategy implemented the leave-one-patient-out technique

over the features extracted from the training data, which, as detailed in Section 3.2,

were composed by 17 PD patients’ data.

Next, each algorithm was retrained on the entire features training data using the

optimal hyperparameters identified from the leave-one-patient-out process.

Finally, these models were tested on the features corresponding to the same testing

data employed for the evaluating the DL approaches. This strategy was motivated

by the risk of assessing a model on only 4 patients’ data. Thus, if these patients,

which were randomly selected, implied a simplification of the FOG detection task,

this simplification would affect all topologies evaluated.

69

Chapter 6

Results and discussion

6.1 Comparison among DL approaches

This section presents and discusses the results obtained. These results are structured

as: I) training performances and justification of the data representation adopted; II)

performance of the 1D-ConvNet; III) performance of the 1D-ConvLSTM; IV) perfor-

mance of the 1D-ConvGRU; V) and discussion of the DL approaches’ performance.

6.1.1 Data representation

The data representation strategy adopted was the spectral window stacking. This

decision was performed according to the training performance of the 1D-ConvNet,

our first approach, on diverse representation strategies. This subsection presents the

training results from the spectral window stacking, which is described in Subsection

3.4.2, compared to training the 1D-ConvNet model using two similar temporal rep-

resentations. Therefore, these results are a reproduction of the initial experiments

endeavoured to select the representation strategy, which was undertaken using only

the training data. Concretely, the representation strategies hereafter compared are:

1. Temporal single window. In this strategy the models were trained using the

window representation as described in Subsection 3.4.1; thus, the input size of

a sample was of 128x9 (measures times signal channels). Hence that from this

representation no window transition characteristics could be extracted by our

feed-forward models.

2. Temporal window stacking. This strategy extended the temporal single

window one, by concatenating windows in pairs on their temporal dimension.

The sample dimensions were, thus, 256x9. Hence this representation allowed

models to extract window transition information.

70

3. Spectral window stacking. This representation, which is described in Sub-

section 3.4.2, was implemented for training the presented DL-based approaches.

As can be seen in Table 6.1, the top-3 model trained using spectral window stack-

ing strategy achieved bets performance regardless presents the top-5 results from

performing the training hyperparameters exploration using each of these 3 represen-

tations.

Table 6.1: Top-3 training models’ results from the representation strategies announced
for comparison in Subsection 6.1.1, sorted according to the stopping criteria described
in Subsection 5.2.6.

Data Training-train Training-validation

representation Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Temporal 91.1 90.3 90.3 82.9 90.2 82.2

single 91.1 95.2 90.0 82.7 88.3 82.9

window 88.5 94.9 86.9 80.0 90.9 79.4

Temporal 70.4 87.16 77.82 75.3 69.32 87.29

window 68.4 82.8 63.4 72.8 77.1 72.0

stacking 71.5 86.56 63.79 68.1 78.37 65.96

Spectral 93.9 94.5 93.5 87.9 92.6 88.7

window 93.2 94.8 92.7 88.3 91.2 89.5

stacking 93.3 91.9 93.0 88.7 90.5 89.8

From Table 6.1, it can be observed that the best model was trained using the

spectral window stacking representation strategy. The training process included an

hyperparameters exploration phase, which concluded to lowering the regularisation

for models trained on the temporal single window representation. Concretely, the

regularisation strategy selected was equivalent to the one employed for training the

recurrent models, as described in Subsection 5.2.6. However, models trained using

the temporal window stacking representation achieved higher training results when

using the same regularisation configuration than the one set for other feed-forward

DL models trained; thus, the same strategy that when using the spectral window

stacking strategy.

The scoring metric (i.e. same as employed for the early stopping strategy) for each

of the representations’ top models in Table 6.1 were: 86.11 for the temporal single

71

window, 77.79 for the temporal window stacking and 90.2 for the spectral window

stacking.

From the training performances, it can be observed that the temporal window

stacking is worsening the performance of the models compared to its former temporal

single window approach. This fact was due to the labelling strategy plus the weights

sharing properties of ConvNets. Concretely, each label is labelled according to half

of its data in this approach, while the other half may be from a different class,

which should provide information from trigger events that lead to the current state.

However, ConvNets extract features in a spatial invariant manner within an input

sample; thus, being unable to distinguish current from previous patterns when the

data are scarce. Consequently, this representation may confuse the models rather

than informing them.

Furthermore, Table 6.2 presents the test performances of these strategies; thus,

will serve to confirm the generalisation capacity of each approach.

Table 6.2: Top training models’ test results from the representation strategies an-
nounced for comparison in Subsection 6.1.1.

Representation Accuracy Sensitivity Specificity GM

Temporal

single 82.3 82.0 83.8 82.6

window

Temporal

window 58.1 66.1 62.7 57.3

stacking

Spectral

window 89.0 91.9 89.5 90.6

stacking

Table 6.2 confirms the robustness of our approach compared to simple temporal

representations since the spectral windowing stacking was the only representation

that allowed the trained models to generalise to the test data. Furthermore, it can

be observed that whereas in Table 6.1 the temporal single window strategy reached

acceptable train performances, its generalisation capacity is significantly lower than

our approach’s one. This fact may be related to the regularisation configurations in

models trained for each approach; however, repeating the experiments using the same

72

regularisation strategy that for our approach confirmed that the hyperparameters

selection was correct since these last models achieved test performances about 20%

lower for the GM of the test sensitivity and test specificity.

6.1.2 1D-ConvNet

Training results. The approach selected from the trained 1D-ConvNets trained for

456 epochs, and as can be observed from Table 6.3, its selection metric (i.e. same as

employed for the early stopping strategy) achieved 90.2%. Furthermore, from other

top models shown in the table, it can be appreciated that the results reported by our

approach were consistent with other similar models trained.

Table 6.3: 1D-ConvNet top-5 models’ train performance. Columns naming descrip-
tion: ‘GM’ → GM of the test sensitivity and test specificity.

Training-train Training-validation

Accuracy Sensitivity Specificity GM Accuracy Sensitivity Specificity GM

93.9 94.5 93.5 93.9 87.9 92.6 88.7 90.2

93.2 94.8 92.7 93.7 88.3 91.2 89.5 90.0

93.3 91.9 93.0 92.4 88.7 90.5 89.8 89.8

92.9 94.8 92.1 93.4 87.2 91.9 87.9 89.4

92.3 95.1 91.5 93.2 86.6 92.9 86.6 89.4

Test results. The test performances for the models included in Table 6.3 are pre-

sented in Table 6.4. These results corroborate that the training process has allowed

our approach to generalise its learnt representations for automatic FOG detection

successfully. Furthermore, it can be noted that these results already outperformed

the state-of-the-art for automatic FOG detection using patient-independent settings.

6.1.3 1D-ConvLSTM

Train performance. The approach selected from the trained 1D-ConvLSTM, whose

training performances are presented in Table 6.5, trained for only 379 epochs. Note

that, usually, models implementing LSTM layers are slower converging than feed-

forward models and those using GRUs instead [27, 28, 53]. Not surprisingly, in our

experiments, indeed, most of the 1D-ConvLSTMs training executions lasted for at

least 1000 of epochs before converging. However, detailed results are only reported

73

Table 6.4: 1D-ConvNet top-5 models’ test performance. Columns naming description:
‘GM’ → GM of the test sensitivity and test specificity.

Accuracy Sensitivity Specificity GM

89.0 91.9 89.5 90.6

89.5 88.6 91.4 89.6

86.1 90.5 87.1 88.5

90.2 88.8 91.9 90.0

88.5 89.3 90.2 89.3

for the selected models, which in this case fulfilled the stopping criteria while being

ranked as the top-1 training model in few epochs.

Table 6.5: 1D-ConvLSTM top-5 models’ train performance. Columns naming de-
scription: ‘GM’ → GM of the test sensitivity and test specificity.

Training-train Training-validation

Accuracy Sensitivity Specificity GM Accuracy Sensitivity Specificity GM

91.6 87.6 91.9 89.3 88.0 91.6 89.4 90.0

86.9 90.6 85.8 87.8 83.6 92.4 83.7 87.5

86.6 90.6 85.2 87.4 84.2 93.9 84.1 88.4

88.0 88.0 87.5 87.3 84.4 91.3 84.6 87.5

90.5 87.0 90.5 88.1 83.9 90.8 85.1 87.3

Test performance. The test performances for the models included in Table 6.5

are presented in Table 6.6.

6.1.4 1D-ConvGRU

Train performance. The top-5 training 1D-ConvGRUs’ results are presented in

Table 6.7. From it, it can be observed that implementing GRUs instead of LSTMs

for extending our feed-forward approach, also permitted to train promising models.

The approach selected trained for 1147 epochs.

Test performance. The test performances for the models included in Table 6.7

are presented in Table 6.8.

74

Table 6.6: 1D-ConvLSTM top-5 models’ test error. Columns naming description:
‘GM’ → GM of the test sensitivity and test specificity.

Accuracy Sensitivity Specificity GM

87.8 88.1 89.1 88.4

84.6 94.3 83.6 88.8

82.8 95.5 81.4 88.1

87.0 92.0 86.8 89.4

87.4 91.7 87.1 89.4

Table 6.7: 1D-ConvGRU top-5 models’ train performance. Columns naming descrip-
tion: ‘GM’ → GM of the test sensitivity and test specificity.

Training-train Training-validation

Accuracy Sensitivity Specificity GM Accuracy Sensitivity Specificity GM

92.3 93.0 91.7 92.2 89.3 92.9 90.5 91.3

91.2 92.5 91.0 91.6 88.1 92.0 89.5 90.3

89.0 92.8 88.5 90.5 86.8 94.1 86.9 90.1

92.2 88.4 92.0 89.8 88.3 91.6 89.4 90.2

92.6 88.0 92.8 90.1 88.6 89.9 90.4 89.8

Table 6.8: 1D-ConvGRU top-5 models’ test error. Columns naming description: ‘GM’
→ GM of the test sensitivity and test specificity.

Accuracy Sensitivity Specificity GM

85.4 94.8 84.7 89.5

87.6 93.2 87.9 90.4

86.5 94.0 86.4 90.0

85.3 87.1 86.2 86.5

86.2 89.8 87.2 88.2

6.1.5 Discussion

On the overall, all approaches demonstrated being capable for being properly trained.

However, from comparing Table 6.5 to Table 6.3 and Table 6.7 it can be noted that

models implementing LSTM layers were less promising than others. The reason

for it was that the models’ architectures were minimised regarding the number of

75

parameters on the feed-forward and later adopted by the recurrent extensions. This

issue, as discussed in Subsection 5.2.6, moreover, lead to having to remove part of the

regularisation strategies to train the recurrent extensions without altering the models’

architectures.

Table 6.9 summarises the results reported from our DL experiments. From it,

it can be concluded that our approach for FOG detection, which was composed by

spectral window stacking data representation and 1D-ConvNets, was able to capture

temporal dependencies and achieve higher performances than its recurrent extensions.

However, from observing the number of parameters in these approaches, it can be

noted that the implementations of the recurrent extensions contain, nearly, half of

the parameters in their predecessor.

The results of these experiments indicate that our feed-forward approach could be

missing some temporal information since its results are nearly equivalent to the 1D-

ConvGRU, who is composed of less than half the 1D-ConvNets number of parameters.

The 1D-ConvGRU presents, however, other less attractive characteristics

Table 6.9: DL approaches results. Columns naming description: ‘# Param’ → num-
ber of model’s parameters as shown in Table 4.1; ‘# Epoch’ → number of epochs
that lasted the model’s training process; and ‘GM’ → GM of the test sensitivity and
test specificity.

Training configuration Testing performance

Model # Param # Epoch Accuracy Sensitivity Specificity GM

1D-ConvNet 37121 456 89.0 91.9 89.5 90.6

1D-ConvLSTM 17857 379 87.8 88.1 89.1 88.4

1D-ConvGRU 14209 1147 85.4 94.8 84.7 89.5

6.2 Comparison among shallow ML

Table 6.10 presents the results obtained from reproducing the state-of-the-art ap-

proaches and training shallow ML algorithms using leave-one-patient-out cross-validation.

Feature extraction results. Regarding the feature extraction approaches com-

posing the state-of-the-art for automatic FOG detection, on the one hand, the best

results from the approaches reproduced were achieved by the approach proposed by

Rodŕıguez et al. (2016) [31]. Concretely, 3 out of the 6 trained algorithms on this fea-

tures surpassed the 80% for the GM between the test sensitivity and test specificity.

76

Table 6.10: Comparative table of the ML approaches’ test results. Columns naming
description: ‘GM’ → GM of the test sensitivity and test specificity.

Features Algorithm Accuracy Sensitivity Specificity GM

Bächlin et al. (2009)

Tree bagging 82.90 30.00 91.89 52.50

AdaBoost 80.56 36.25 88.10 56.51

LogitBoost 80.46 34.64 88.25 55.29

RUSBoost 66.05 96.96 60.80 76.78

RobutBoost 79.60 36.96 86.85 56.66

SVM-RBF 62.57 94.46 57.15 73.48

Mazilu et al. (2012)

Tree bagging 83.49 64.29 86.76 74.68

AdaBoost 81.88 59.82 85.64 71.57

LogitBoost 80.28 68.75 82.24 75.19

RUSBoost 66.52 98.04 61.16 77.43

RobutBoost 77.32 62.86 79.78 70.81

SVM-RBF 64.81 97.50 59.25 76.00

Tripoliti et al. (2013)

Tree bagging 83.57 12.68 95.63 34.82

AdaBoost 82.01 18.75 92.77 41.71

LogitBoost 82.92 16.79 94.17 39.76

RUSBoost 59.62 96.07 53.42 71.64

RobutBoost 78.61 37.32 85.64 56.53

SVM-RBF 59.77 97.50 53.36 72.13

Rodŕıguez et al. (2016)

Tree bagging 88.99 51.89 95.35 70.34

AdaBoost 85.36 30.16 94.83 53.48

LogitBoost 85.18 77.20 86.55 81.74

RUSBoost 72.04 96.95 67.76 81.05

RobutBoost 85.52 59.25 90.02 73.03

SVM-RBF 75.19 96.23 71.58 83.00

On the other hand, the algorithms trained on the features proposed by Tripoliti et

al. (2013) [141] achieved the poorest results among all.

From Table 6.10 it can be observed that Mazilu et al.’s (2012) [79] demonstrated

being the most robust representation since all algorithms trained using this features

achieved performances higher than 70% for the GM between the test sensitivity and

test specificity.

77

Shallow ML results. Regarding the results from the shallow ML algorithms se-

lected, it can be observed that, as already discussed in Subsection 5.5.1, all algorithms

achieved performances higher than 70% for the GM between the test sensitivity and

test specificity, at least for one feature extraction approach. Thus, confirming the

suitability of these algorithms for dealing with binary classification tasks.

The algorithm which obtained the best performance was the SVM when combined

with Rodŕıguez et al.’s (2016) [31] features. Furthermore, Rodŕıguez et al.’s (2016)

[31] and Rodŕıguez et al.’s (2017) [110], both indicate their preference for SVMs for

FOG detection; thus, these results agree with their ML algorithm selection.

Comparison between our work and the state-of-the-art in the literature.

The state-of-the-art for automatic FOG detection in the literature using patient inde-

pendent conditions (i.e. patients in the test data and train are different people) were

mentioned in Section 1.5. Table 6.11 includes this results together with a summary

of our reproduction of these approaches.

Table 6.11: Experiments’ results comparison. Columns naming description: ‘GM’ →
GM of the test sensitivity and test specificity.

Data representation Model GM

Literature

Bächlin et al. (2009) [16] Thresholds 77.23

Mazilu et al. (2012) [79] Random forests 79.49

Tripoliti et al. (2013) [141] Random forests 84.07

Rodŕıguez et al. (2017) [110] SVM-RBF 76.8

Reproduction

Bächlin et al. (2009) RUSBoost 76.78

Mazilu et al. (2012) RUSBoost 77.43

Tripoliti et al. (2013) SVM-RBF 72.13

Rodŕıguez et al. (2016) SVM-RBF 83.00

From Table 6.11 it can be observed that some differences appear between our

reproduction and the literature’s results. However, these differences can be justified

by the following observations in the data and evaluation strategies employed for each

approach:

• Bächlin et al. (2009) [16] employed an evaluation strategy with 50% of window

tolerance. Moreover, they employed the Daphnet dataset. Thus, as discussed

in Section 1.5, their results were overestimated compared to our single sample

evaluation strategy.

78

• Mazilu et al. (2012) [79] employed the Daphnet dataset, which also overesti-

mated the performance of their approach.

• Tripoliti et al. (2013) [141] employed a simple data collection protocol similar

to for the Daphnet dataset. Moreover, their results are only computed from the

performance achieved by cross-validating over 5 PD patients, which will poorly

represent the actual performance of the method.

• Rodŕıguez et al. (2017) [110] employed an episodic evaluation strategy, which

lowers the methods’ performance due to the easiness of detecting extended pe-

riods of similar data (e.g. straight walking periods, sitting and standing).

Therefore, on the overall, these results resemble the performances achieved by

the original authors themselves when being accurately reproduced and applied to our

data. Furthermore, all performance disagreements can be argued and justified; thus,

it can be stated that results presented in Table 6.10 are equivalent to applying the

state-of-the-art approaches to our data.

6.3 Comparison between DL and shallow ML ap-

proaches

Table 6.12 summarises the results reported from our DL experiments together with

the best results from Table 6.10 to compare the results from our approach to state-

of-the-art reproduction.

From it, it can be concluded that our approach for FOG detection, which was com-

posed by spectral window stacking data representation and 1D-ConvNets, was able

to capture temporal dependencies and achieve higher performances than its recurrent

extensions. However, from observing the number of parameters in these approaches,

it can be noted that the implementations of the recurrent extensions contain, nearly,

half of the parameters in their predecessor.

The results of these experiments confirm that our DL-based approaches were able

to outperform the state-of-the-art methodologies for automatic FOG.

79

Table 6.12: Experiments’ results comparison. Columns naming description: ‘GM’ →
GM of the test sensitivity and test specificity.

Data representation Model Accuracy Sensitivity Specificity GM

spectral window stacking 1D-ConvNet 89.0 91.9 89.5 90.6

spectral window stacking 1D-ConvLSTM 87.8 88.1 89.1 88.4

spectral window stacking 1D-ConvGRU 85.4 94.8 84.7 89.5

Bächlin et al. (2009) RUSBoost 66.05 96.96 60.80 76.78

Mazilu et al. (2012) RUSBoost 66.52 98.04 61.16 77.43

Tripoliti et al. (2013) SVM-RBF 59.77 97.50 53.36 72.13

Rodŕıguez et al. (2016) SVM-RBF 75.19 96.23 71.58 83.00

80

Chapter 7

Conclusions

This thesis is, to the best of our knowledge, the first study to present a method for

FOG detection on uncontrolled environments based on DL models. Furthermore, our

approach was able to solve the committed task, while outperforming the state-of-the-

art methodologies for automatic FOG detection in the literature.

The DL models presented were a feed-forward 1D-ConvNet, which achieved per-

formances above 90% for the GM between test sensitivity and specificity, and two

recurrent extensions from it, the 1D-ConvLSTM and the 1D-ConvGRU.

For comparison purposes to our approaches, the methodologies composing the

state-of-the-art for automatic FOG detection were accurately reproduced on our data,

generating 4 different sets of features. These features were used for training powerful

binary classification shallow ML algorithms. The results reported by our reproduction

of the state-of-the-art approaches were consistent with the results reported by the

original authors of these feature extraction methods; thus, allowing our DL approaches

to be compared to the newly trained models.

DL approaches outperformed all shallow ML models, demonstrating its superior

generalisation and representation capacity for detecting FOG events from wearable

inertial sensors’ data recorded from PD patients in uncontrolled environments while

performing ADL.

As described in Section 1.1, our approaches, which significantly improve the cur-

rent performance of existing automatic FOG detection methods, may serve to the

following:

• Improve the medical record about FOG evolution in PD patients to allow clini-

cians to dispose of accurate and objective symptomatic records of their patients.

These records could serve to understand FOG in PD patients better and to im-

prove the clinical control of the disease evolution.

81

• Allow clinicians to objectively evaluate the effect of drugs (e.g. during clinical

trials) over the symptom’s characteristics from automatically gathered indica-

tors.

Future work. Interesting extensions of our work are:

• To perform an hyperparameter and architecture exploration focused for the 1D-

ConvGRU, whose performances, presented in Table 6.9, indicate that this is a

promising manner to improve our results further.

• Implementing and evaluating our approaches on real-time. Currently, at the

CETpD, the authors are working with a real-time system for automatic FOG

detection, which implements an SVM-RBF on a subset of the features described

by Rodŕıguez et al.’s (2017) [110]. This model occupies 26 kilobytes (KB) (i.e.

SVM with 27 features and 250 support vectors) in memory, while our current

DL approaches occupy the following:

– 1D-ConvNet: 37121 parameters, 145 KB.

– 1D-ConvLSTM: 17857 parameters, 69 KB.

– 1D-ConvGRU: 14209 parameters, 55 KB.

Our device implements a microcontroller (µC) with architecture ARM-cortex

M4, concretely, the STM32F415RG [5]. This µC disposes of 500 KB free mem-

ory available for the FOG detection model, which would allow the storage of

our DL approach.

Publications. From the work undertaken within this study, the author has already

submitted a conference paper for the 14th International Work-Conference on Arti-

ficial Neural Networks titeled ‘Deep learning for detecting freezing of gait episodes

in Parkinson’s disease based on accelerometers’. This paper has been accepted for

oral presentation on the ‘Human activity recognition for health and well-being ap-

plications’ special session. Furthermore, the results presented in this thesis will be

employed for writing a journal paper.

82

Bibliography

[1] Centro Médico Teknon. http://www.teknon.es/es/

unidad-parkinson-trastornos-movimiento. Accessed: 2017-04-11.

[2] Hospital Sant Antoni Abat. http://www.csg.cat/nosaltres/

els-nostres-centres/hospital-sant-antoni-abat/. Accessed: 2017-

04-11.

[3] Improving Quality of Life with an Automatic Control System (MASPARK).

http://futur.upc.edu/15557508. Accessed: 2017-04-11.

[4] J-BHI Special Issue on ‘Deep Learning for Biomedical and Health Infor-

matics’, Journal: Journal of Biomedical and Health Informatics; Editor-

in-Chief: Guang-Zhong, Yang. http://jbhi.embs.org/special-issues/

deep-learning-for-biomedical-and-health-informatics/. Accessed:

2017-04-11.

[5] micro controller stm32f415rg. http://www.st.com/en/microcontrollers/

stm32f415rg.html. Accessed: 2017-04-20.

[6] PD patient self care blog. http://www.riggare.se/1-vs-8765/. Accessed:

2017-04-06.

[7] Remote and Autonomous Management of Parkinson’s Disease (REMPARK).

http://www.rempark.eu/. Accessed: 2017-04-11.

[8] source code github. https://github.com/juliacamps/FOG. Accessed: 2017-

04-22.

[9] Technical Research Centre for Dependency Care and Autonomous Living

(CETpD). http://www.epsevg.upc.edu/cetpd/index.php. Accessed: 2017-

04-11.

83

http://www.teknon.es/es/unidad-parkinson-trastornos-movimiento
http://www.teknon.es/es/unidad-parkinson-trastornos-movimiento
http://www.csg.cat/nosaltres/els-nostres-centres/hospital-sant-antoni-abat/
http://www.csg.cat/nosaltres/els-nostres-centres/hospital-sant-antoni-abat/
http://futur.upc.edu/15557508
http://jbhi.embs.org/special-issues/deep-learning-for-biomedical-and-health-informatics/
http://jbhi.embs.org/special-issues/deep-learning-for-biomedical-and-health-informatics/
http://www.st.com/en/microcontrollers/stm32f415rg.html
http://www.st.com/en/microcontrollers/stm32f415rg.html
http://www.riggare.se/1-vs-8765/
http://www.rempark.eu/
https://github.com/juliacamps/FOG
http://www.epsevg.upc.edu/cetpd/index.php

[10] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

[11] Alison Abbott. Levodopa: the story so far. Nature, 466(7310):S6–S7, 2010.

[12] Claas Ahlrichs, Albert Samà, Michael Lawo, Joan Cabestany, Daniel Rodŕıguez-

Mart́ın, Carlos Pérez-López, Dean Sweeney, Leo R Quinlan, Gearòid Ò Laighin,

Timothy Counihan, et al. Detecting freezing of gait with a tri-axial accelerome-

ter in parkinsons disease patients. Medical & biological engineering & computing,

54(1):223–233, 2016.

[13] MM Al Rahhal, Yakoub Bazi, Haikel AlHichri, Naif Alajlan, Farid Melgani, and

RR Yager. Deep learning approach for active classification of electrocardiogram

signals. Information Sciences, 345:340–354, 2016.

[14] Nils-Erik Andén, Allan Rubenson, Kjell Fuxe, and Tomas Hökfelt. Evidence

for dopamine receptor stimulation by apomorphine. Journal of Pharmacy and

Pharmacology, 19(9):627–629, 1967.

[15] Pablo Arias and Javier Cudeiro. Effect of rhythmic auditory stimulation on gait

in parkinsonian patients with and without freezing of gait. PloS one, 5(3):e9675,

2010.

[16] Marc Bächlin, Jeffrey M Hausdorff, Daniel Roggen, Nir Giladi, Meir Plotnik,

and Gerhard Tröster. Online detection of freezing of gait in parkinson’s dis-

ease patients: A performance characterization. In Proceedings of the Fourth

International Conference on Body Area Networks, page 11. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering),

2009.

84

[17] Marc Bachlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M Hausdorff,

Nir Giladi, and Gerhard Troster. Wearable assistant for parkinsons disease

patients with the freezing of gait symptom. IEEE Transactions on Information

Technology in Biomedicine, 14(2):436–446, 2010.

[18] Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. Learning

representations from eeg with deep recurrent-convolutional neural networks.

arXiv preprint arXiv:1511.06448, 2015.

[19] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166, 1994.

[20] Bastiaan R Bloem, Jeffrey M Hausdorff, Jasper E Visser, and Nir Giladi. Falls

and freezing of gait in parkinson’s disease: a review of two interconnected,

episodic phenomena. Movement Disorders, 19(8):871–884, 2004.

[21] Léon Bottou. Online learning and stochastic approximations. On-line learning

in neural networks, 17(9):142, 1998.

[22] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[23] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of su-

pervised learning algorithms. In Proceedings of the 23rd international conference

on Machine learning, pages 161–168. ACM, 2006.

[24] Jianxu Chen, Lin Yang, Yizhe Zhang, Mark Alber, and Danny Z Chen. Combin-

ing fully convolutional and recurrent neural networks for 3d biomedical image

segmentation. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, editors, Advances in Neural Information Processing Systems 29,

pages 3036–3044. Curran Associates, Inc., 2016.

[25] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. On the properties of neural machine translation: Encoder-decoder ap-

proaches. arXiv preprint arXiv:1409.1259, 2014.

[26] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[27] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555, 2014.

85

https://github.com/fchollet/keras

[28] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated

feedback recurrent neural networks. In International Conference on Machine

Learning, pages 2067–2075, 2015.

[29] Wikimedia Commons. Main page — wikimedia commons, the free media repos-

itory, 2017. [Online; accessed 17-April-2017].

[30] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-

ing, 20(3):273–297, 1995.

[31] Carlos Pérez-López Andreu Català Berta Mestre Sheila Alcaine Àngels Bayès

Daniel Rodŕıguez-Mart́ın, Albert Samà. Comparison of Features, Window Sizes

and Classifiers in Detecting Freezing of Gait in Patients with Parkinson’s Dis-

ease Through a Waist-Worn Accelerometer, volume 288 of Frontiers in Artificial

Intelligence and Applications. 2016.

[32] Lonneke ML De Lau and Monique MB Breteler. Epidemiology of parkinson’s

disease. The Lancet Neurology, 5(6):525–535, 2006.

[33] Anna De Rosa, Alessandro Tessitore, Leonilda Bilo, Silvio Peluso, and Giuseppe

De Michele. Infusion treatments and deep brain stimulation in parkinson’s

disease: The role of nursing. Geriatric Nursing, 37(6):434–439, 2016.

[34] Silvia Del Din, Alan Godfrey, Claudia Mazzà, Sue Lord, and Lynn Rochester.

Free-living monitoring of parkinson’s disease: Lessons from the field. Movement

Disorders, 31(9):1293–1313, 2016.

[35] PareshK Doshi. Long-term surgical and hardware-related complications of deep

brain stimulation. Stereotactic and functional neurosurgery, 89(2):89–95, 2011.

[36] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research, 12(Jul):2121–2159, 2011.

[37] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for

physical interaction through video prediction. In D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information

Processing Systems 29, pages 64–72. Curran Associates, Inc., 2016.

86

[38] Weaver FM, Follett K, Stern M, and et al. Bilateral deep brain stimulation vs

best medical therapy for patients with advanced parkinson disease: A random-

ized controlled trial. JAMA, 301(1):63–73, 2009.

[39] Susan H Fox. Non-dopaminergic treatments for motor control in parkinsons

disease. Drugs, 73(13):1405–1415, 2013.

[40] JP Frankel, AJ Lees, PA Kempster, and GM Stern. Subcutaneous apomorphine

in the treatment of parkinson’s disease. Journal of Neurology, Neurosurgery &

Psychiatry, 53(2):96–101, 1990.

[41] Yoav Freund. A more robust boosting algorithm. arXiv preprint

arXiv:0905.2138, 2009.

[42] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of

on-line learning and an application to boosting. In European conference on

computational learning theory, pages 23–37. Springer, 1995.

[43] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic

regression: a statistical view of boosting (with discussion and a rejoinder by

the authors). The annals of statistics, 28(2):337–407, 2000.

[44] Anders Fytagoridis, Tomas Heard, Jennifer Samuelsson, Peter Zsigmond, Elena

Jiltsova, Simon Skyrman, Thomas Skoglund, Terry Coyne, Peter Silburn, and

Patric Blomstedt. Surgical replacement of implantable pulse generators in deep

brain stimulation: adverse events and risk factors in a multicenter cohort.

Stereotactic and Functional Neurosurgery, 94(4):235–239, 2016.

[45] Sonia Gandhi and Helene Plun-Favreau. Mutations and mechanism: how pink1

may contribute to risk of sporadic parkinsons disease. Brain, 140(1):2–5, 2017.

[46] N Giladi, MP McDermott, S Fahn, S Przedborski, J Jankovic, M Stern, C Tan-

ner, Parkinson Study Group, et al. Freezing of gait in pd prospective assessment

in the datatop cohort. Neurology, 56(12):1712–1721, 2001.

[47] N Giladi, H Shabtai, ES Simon, S Biran, J Tal, and AD Korczyn. Construction

of freezing of gait questionnaire for patients with parkinsonism. Parkinsonism

& related disorders, 6(3):165–170, 2000.

87

[48] N Giladi, TA Treves, ES Simon, H Shabtai, Y Orlov, B Kandinov, D Paleacu,

and AD Korczyn. Freezing of gait in patients with advanced parkinson’s disease.

Journal of neural transmission, 108(1):53–61, 2001.

[49] Nir Giladi, Joseph Tal, Tali Azulay, Oliver Rascol, David J Brooks, Eldad

Melamed, Wolfgang Oertel, Werner H Poewe, Fabrizio Stocchi, and Eduardo

Tolosa. Validation of the freezing of gait questionnaire in patients with parkin-

son’s disease. Movement Disorders, 24(5):655–661, 2009.

[50] Anamika Giri, Kin Y Mok, Iris Jansen, Manu Sharma, Christelle Tesson, Gra-

ziella Mangone, Suzanne Lesage, José M Bras, Joshua M Shulman, Una-Marie

Sheerin, et al. Lack of evidence for a role of genetic variation in tmem230 in the

risk for parkinson’s disease in the caucasian population. Neurobiology of aging,

50:167–e11, 2017.

[51] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[52] Rafael C Eddins Gonzalez, Steven L Woods, Richard E Richard Eugene

Rafael C Gonzalez, Richard E Woods, and Steven L Eddins. Digital image

processing using MATLAB. Number 04; TA1637, G6. 2004.

[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[54] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-

nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,

Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural network

with dynamic external memory. Nature, 538(7626):471–476, 2016.

[55] Hayit Greenspan, Bram van Ginneken, and Ronald M Summers. Guest editorial

deep learning in medical imaging: Overview and future promise of an exciting

new technique. IEEE Transactions on Medical Imaging, 35(5):1153–1159, 2016.

[56] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan

Wierstra. Draw: A recurrent neural network for image generation. arXiv

preprint arXiv:1502.04623, 2015.

[57] Fredrik Gustafsson. Determining the initial states in forward-backward filtering.

IEEE Transactions on Signal Processing, 44(4):988–992, 1996.

88

http://www.deeplearningbook.org

[58] Nils Y Hammerla, Shane Halloran, and Thomas Ploetz. Deep, convolutional,

and recurrent models for human activity recognition using wearables. arXiv

preprint arXiv:1604.08880, 2016.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[61] Joseph Jankovic. Parkinsons disease: clinical features and diagnosis. Journal

of Neurology, Neurosurgery & Psychiatry, 79(4):368–376, 2008.

[62] C Jenkinson, V Peto, R Fitzpatrick, R Greenhall, and N Hyman. Self-reported

functioning and well-being in patients with parkinson’s disease: comparison of

the short-form health survey (sf-36) and the parkinson’s disease questionnaire

(pdq-39). Age and ageing, 24(6):505–509, 1995.

[63] Crispin Jenkinson, Carl Clarke, Richard Gray, Paul Hewitson, Natalie Ives,

David Morley, Caroline Rick, Keith Wheatley, and Adrian Williams. Compar-

ing results from long and short form versions of the parkinson’s disease question-

naire in a longitudinal study. Parkinsonism & Related Disorders, 21(11):1312–

1316, 2015.

[64] Lorraine V Kalia and Anthony E Lang. Parkinson disease in 2015: Evolving

basic, pathological and clinical concepts in pd. Nature reviews Neurology, 2016.

[65] John W Kebabian and Donald B Calne. Multiple receptors for dopamine.

Nature, 277(5692):93–96, 1979.

[66] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2014.

[67] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-specific

ecg classification by 1-d convolutional neural networks. IEEE Transactions on

Biomedical Engineering, 63(3):664–675, 2016.

[68] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Ur-

tasun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In C. Cortes,

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances

89

in Neural Information Processing Systems 28, pages 3294–3302. Curran Asso-

ciates, Inc., 2015.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[70] David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas

Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle,

Aaron Courville, et al. Zoneout: Regularizing rnns by randomly preserving

hidden activations. arXiv preprint arXiv:1606.01305, 2016.

[71] Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian

Pierce, Peter Ondruska, Ishaan Gulrajani, and Richard Socher. Ask me any-

thing: Dynamic memory networks for natural language processing. CoRR,

abs/1506.07285, 2015.

[72] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[74] Andrew Lees. Alternatives to levodopa in the initial treatment of early parkin-

son’s disease. Drugs & Aging, 22(9):731–740, 2005.

[75] Walter Maetzler, Josefa Domingos, Karin Srulijes, Joaquim J Ferreira, and

Bastiaan R Bloem. Quantitative wearable sensors for objective assessment of

parkinson’s disease. Movement Disorders, 28(12):1628–1637, 2013.

[76] Jaroslaw Marusiak, Katarzyna Kisiel-Sajewicz, Anna Jaskólska, and Artur

Jaskólski. Higher muscle passive stiffness in parkinson’s disease patients than

in controls measured by myotonometry. Archives of physical medicine and re-

habilitation, 91(5):800–802, 2010.

[77] Sinziana Mazilu, Ulf Blanke, Alberto Calatroni, Eran Gazit, Jeffrey M. Haus-

dorff, and Gerhard Trster. The role of wrist-mounted inertial sensors in detect-

ing gait freeze episodes in parkinsons disease. Pervasive and Mobile Computing,

33:1 – 16, 2016.

90

[78] Sinziana Mazilu, Alberto Calatroni, Eran Gazit, Daniel Roggen, Jeffrey M

Hausdorff, and Gerhard Tröster. Feature learning for detection and predic-

tion of freezing of gait in parkinsons disease. In International Workshop on

Machine Learning and Data Mining in Pattern Recognition, pages 144–158.

Springer, 2013.

[79] Sinziana Mazilu, Michael Hardegger, Zack Zhu, Daniel Roggen, Gerhard

Troster, Meir Plotnik, and Jeffrey M Hausdorff. Online detection of freezing

of gait with smartphones and machine learning techniques. In Pervasive Com-

puting Technologies for Healthcare (PervasiveHealth), 2012 6th International

Conference on, pages 123–130. IEEE, 2012.

[80] Orna Moore, Chava Peretz, and Nir Giladi. Freezing of gait affects quality of

life of peoples with parkinson’s disease beyond its relationships with mobility

and gait. Movement disorders, 22(15):2192–2195, 2007.

[81] Steven T Moore, Hamish G MacDougall, and William G Ondo. Ambulatory

monitoring of freezing of gait in parkinson’s disease. Journal of neuroscience

methods, 167(2):340–348, 2008.

[82] Steven T Moore, Don A Yungher, Tiffany R Morris, Valentina Dilda, Hamish G

MacDougall, James M Shine, Sharon L Naismith, and Simon JG Lewis. Au-

tonomous identification of freezing of gait in parkinson’s disease from lower-

body segmental accelerometry. Journal of neuroengineering and rehabilitation,

10(1):19, 2013.

[83] Priya Ranjan Muduli, Rakesh Reddy Gunukula, and Anirban Mukherjee. A

deep learning approach to fetal-ecg signal reconstruction. In Communication

(NCC), 2016 Twenty Second National Conference on, pages 1–6. IEEE, 2016.

[84] Giovanna Mulas, Elena Espa, Sandro Fenu, Saturnino Spiga, Giovanni Cossu,

Elisabetta Pillai, Ezio Carboni, Gabriella Simbula, Dragana Jadi, Fabrizio

Angius, Stefano Spolitu, Barbara Batetta, Daniela Lecca, Andrea Giuffrida, and

Anna R. Carta. Differential induction of dyskinesia and neuroinflammation by

pulsatile versus continuous l-dopa delivery in the 6-ohda model of parkinson’s

disease. Experimental Neurology, 286:83 – 92, 2016.

91

[85] Le Nguyen Ngu Nguyen, Daniel Rodŕıguez-Mart́ın, Andreu Català, Carlos

Pérez-López, Albert Samà, and Andrea Cavallaro. Basketball activity recogni-

tion using wearable inertial measurement units. In Proceedings of the XVI In-

ternational Conference on Human Computer Interaction, page 60. ACM, 2015.

[86] Alice Nieuwboer and Nir Giladi. Characterizing freezing of gait in parkinson’s

disease: models of an episodic phenomenon. Movement Disorders, 28(11):1509–

1519, 2013.

[87] Alice Nieuwboer, Lynn Rochester, Talia Herman, Wim Vandenberghe,

George Ehab Emil, Tom Thomaes, and Nir Giladi. Reliability of the new freez-

ing of gait questionnaire: agreement between patients with parkinson’s disease

and their carers. Gait & posture, 30(4):459–463, 2009.

[88] Robert L Nussbaum and Christopher E Ellis. Alzheimer’s disease and parkin-

son’s disease. New england journal of medicine, 348(14):1356–1364, 2003.

[89] John G. Nutt, William R. Woodward, John P. Hammerstad, Julie H. Carter,

and John L. Anderson. The onoff phenomenon in parkinson’s disease. New

England Journal of Medicine, 310(8):483–488, 1984. PMID: 6694694.

[90] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

[91] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm re-

current neural networks for multimodal wearable activity recognition. Sensors,

16(1):115, 2016.

[92] World Health Organization. Neurological disorders: public health challenges.

World Health Organization, 2006.

[93] Sean S OSullivan, Andrew H Evans, and Andrew J Lees. Dopamine dysregula-

tion syndrome. CNS drugs, 23(2):157–170, 2009.

[94] Carlos Pérez-López, Albert Samà, Daniel Rodŕıguez-Mart́ın, Andreu Català,

Joan Cabestany, Juan Manuel Moreno-Arostegui, Eva de Mingo, and Alejandro

Rodŕıguez-Molinero. Assessing motor fluctuations in parkinsons disease patients

based on a single inertial sensor. Sensors, 16(12):2132, 2016.

92

[95] Joel S Perlmutter and Jonathan W Mink. Deep brain stimulation. Annu. Rev.

Neurosci., 29:229–257, 2006.

[96] Thomas G Pickering, William Gerin, and Amy R Schwartz. What is the

white-coat effect and how should it be measured? Blood pressure monitor-

ing, 7(6):293–300, 2002.

[97] Lionel Pigou, Aäron van den Oord, Sander Dieleman, Mieke Van Herreweghe,

and Joni Dambre. Beyond temporal pooling: Recurrence and temporal con-

volutions for gesture recognition in video. arXiv preprint arXiv:1506.01911,

2015.

[98] Werner Poewe and Gregor K Wenning. Apomorphine: an underutilized therapy

for parkinson’s disease. Movement disorders, 15(5):789–794, 2000.

[99] Mihael H Polymeropoulos, Christian Lavedan, Elisabeth Leroy, Susan E Ide,

Anindya Dehejia, Amalia Dutra, Brian Pike, Holly Root, Jeffrey Rubenstein,

Rebecca Boyer, et al. Mutation in the α-synuclein gene identified in families

with parkinson’s disease. science, 276(5321):2045–2047, 1997.

[100] Bart Post, Maruschka P Merkus, Rob J De Haan, and Johannes D Speelman.

Prognostic factors for the progression of parkinson’s disease: a systematic re-

view. Movement disorders, 22(13):1839–1851, 2007.

[101] Tamara Pringsheim, Nathalie Jette, Alexandra Frolkis, and Thomas DL

Steeves. The prevalence of parkinson’s disease: A systematic review and meta-

analysis. Movement disorders, 29(13):1583–1590, 2014.

[102] Rangaraj M Rangayyan. Biomedical signal analysis, volume 33. John Wiley &

Sons, 2015.

[103] Daniele Ravi, Charence Wong, Benny Lo, and Guang-Zhong Yang. Deep learn-

ing for human activity recognition: A resource efficient implementation on low-

power devices. In Wearable and Implantable Body Sensor Networks (BSN),

2016 IEEE 13th International Conference on, pages 71–76. IEEE, 2016.

[104] D. Rav, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and

G. Z. Yang. Deep learning for health informatics. IEEE Journal of Biomedical

and Health Informatics, 21(1):4–21, Jan 2017.

93

[105] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Sama, Xavier Parra, and Davide An-

guita. Transition-aware human activity recognition using smartphones. Neuro-

computing, 171:754–767, 2016.

[106] Jorge-Luis Reyes-Ortiz, Luca Oneto, Alessandro Ghio, Albert Samá, Davide

Anguita, and Xavier Parra. Human activity recognition on smartphones with

awareness of basic activities and postural transitions. In International Confer-

ence on Artificial Neural Networks, pages 177–184. Springer, 2014.

[107] L Rivera-Calimlim, CA Dujovne, JP Morgan, L Lasagna, and JR Bianchine.

L-dopa treatment failure: explanation and correction. Br Med J, 4(5727):93–94,

1970.

[108] Alexandra Rizos, Pablo Martinez-Martin, Suvankar Pal, Camille Carroll, Da-

vide Martino, Rani Sophia, Cristian Falup-Pecurariu, Belinda Kessel, Anna

Sauerbier, Anne Martin, et al. The first parkinson’s disease pain questionnaire

(king’s pd pain quest)–an interim analysis of a multicentre study of the patient’s

perspective. Parkinsonism & Related Disorders, 22:e41, 2016.

[109] Daniel Rodŕıguez-Mart́ın, Carlos Pérez-López, Albert Samà, Joan Cabestany,

and Andreu Català. A wearable inertial measurement unit for long-term mon-

itoring in the dependency care area. Sensors, 13(10):14079–14104, 2013.

[110] Daniel Rodŕıguez-Mart́ın, Albert Samà, Carlos Pérez-López, Andreu Català,

Joan M Moreno Arostegui, Joan Cabestany, Àngels Bayés, Sheila Alcaine, Berta

Mestre, Anna Prats, et al. Home detection of freezing of gait using support

vector machines through a single waist-worn triaxial accelerometer. PloS one,

12(2):e0171764, 2017.

[111] Daniel Rodriguez-Martin, Albert Samà, Carlos Perez-Lopez, Andreu Català,

Joan Cabestany, and Alejandro Rodriguez-Molinero. Svm-based posture iden-

tification with a single waist-located triaxial accelerometer. Expert Systems with

Applications, 40(18):7203–7211, 2013.

[112] Daniel Rodŕıguez-Mart́ına, Albert Samàa, Carlos Pérez-Lópeza, Andreu

Catalàa, Joan Cabestanya, Patrick Browneb, and Alejandro Rodŕıguez-

Molinerod. Posture detection based on a waist-worn accelerometer: an ap-

plication to improve freezing of gait detection in parkinsons disease patients.

Recent Advances in Ambient Assisted Living-Bridging Assistive Technologies,

E-Health and Personalized Health Care, 20:3, 2015.

94

[113] A Rodriguez-Molinero, D Perez-Martinez, A Samá, P Sanz, M Calopa,

A Galvez, C Perez-Lopez, J Romagosa, and C Catala. Detection of gait pa-

rameters, bradykinesia, and falls in patients with parkinson’s disease by using

a unique triaxial accelerometer. Movement Disorders, 25:S646, 2010.

[114] Alejandro Rodŕıguez-Molinero, David Andrés Pérez-Mart́ınez, César Gálvez-

Barrón, J Hernández-Vara, JC Mart́ınez-Castrillo, R Álvarez, O de Fabregues,

A Samà, Carlos Pérez-López, J Romagosa, et al. Remote control of apomor-

phine infusion rate in parkinson’s disease: Real-time dose variations according

to the patients’ motor state. a proof of concept. Parkinsonism & related disor-

ders, 21(8):996, 2015.

[115] Alejandro Rodŕıguez-Molinero, Albert Samà, David A Pérez-Mart́ınez, Car-

los Pérez López, Jaume Romagosa, Àngels Bayés, Pilar Sanz, Matilde Calopa,

César Gálvez-Barrón, Eva de Mingo, et al. Validation of a portable device for

mapping motor and gait disturbances in parkinsons disease. JMIR mHealth and

uHealth, 3(1):e9, 2015.

[116] M. C. Rodriguez-Oroz, J. A. Obeso, A. E. Lang, J.-L. Houeto, P. Pollak,

S. Rehncrona, J. Kulisevsky, A. Albanese, J. Volkmann, M. I. Hariz, N. P.

Quinn, J. D. Speelman, J. Guridi, I. Zamarbide, A. Gironell, J. Molet,

B. Pascual-Sedano, B. Pidoux, A. M. Bonnet, Y. Agid, J. Xie, A.-L. Benabid,

A. M. Lozano, J. Saint-Cyr, L. Romito, M. F. Contarino, M. Scerrati, V. Fraix,

and N. Van Blercom. Bilateral deep brain stimulation in parkinson’s disease: a

multicentre study with 4 years follow-up. Brain, 128(10):2240, 2005.

[117] Manuela Rosa, Emma Scelzo, Marco Locatelli, Giorgio Carrabba, Vincenzo

Levi, Mattia Arlotti, Sergio Barbieri, Paolo Rampini, and Alberto Priori. Risk

of infection after local field potential recording from externalized deep brain

stimulation leads in parkinson’s disease. World Neurosurgery, 97:64–69, 2017.

[118] G Webster Ross, Helen Petrovitch, Robert D Abbott, James Nelson, William

Markesbery, Daron Davis, John Hardman, Lenore Launer, Kamal Masaki, Car-

oline M Tanner, et al. Parkinsonian signs and substantia nigra neuron density

in decendents elders without pd. Annals of neurology, 56(4):532–539, 2004.

[119] JI Sage, L Schuh, RE Heikkila, and RC Duvoisin. Continuous duodenal infu-

sions of levodopa: plasma concentrations and motor fluctuations in parkinson’s

disease. Clinical neuropharmacology, 11(1):36–44, 1988.

95

[120] A Samà, C Perez-Lopez, J Romagosa, D Rodriguez-Martin, A Catala,

J Cabestany, DA Perez-Martinez, and A Rodriguez-Molinero. Dyskinesia and

motor state detection in parkinson’s disease patients with a single movement

sensor. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual

International Conference of the IEEE, pages 1194–1197. IEEE, 2012.

[121] Albert Sama, Cecilio Angulo, Diego Pardo, Andreu Català, and Joan

Cabestany. Analyzing human gait and posture by combining feature selection

and kernel methods. Neurocomputing, 74(16):2665–2674, 2011.

[122] Albert Sama and Andreu Catala. Extracting gait spatiotemporal properties

from parkinson’s disease patients.

[123] Albert Sama, Diego E Pardo-Ayala, Joan Cabestany, and Alejandro Rodŕıguez-

Molinero. Time series analysis of inertial-body signals for the extraction of

dynamic properties from human gait. In Neural Networks (IJCNN), The 2010

International Joint Conference on, pages 1–5. IEEE, 2010.

[124] Albert Samà Monsońıs, Carlos Pérez López, Daniel Manuel Rodŕıguez Mart́ın,

Joan Cabestany Moncuśı, Juan Manuel Moreno Aróstegui, and Alejandro

Rodŕıguez Molinero. A heterogeneous database for movement knowledge ex-

traction in parkinson’s disease. In ESANN 2013 proceedings: European Sym-

posium on Artificial Neural Networks, Computational Intelligence and Machine

Learning: Bruges (Belgium), 24-26 April 2013, pages 413–418, 2013.

[125] JD Schaafsma, Y Balash, T Gurevich, AL Bartels, Jeffrey M Hausdorff, and

N Giladi. Characterization of freezing of gait subtypes and the response of each

to levodopa in parkinson’s disease. European Journal of Neurology, 10(4):391–

398, 2003.

[126] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano.

Rusboost: Improving classification performance when training data is skewed.

In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on,

pages 1–4. IEEE, 2008.

[127] Hava T Siegelmann and Eduardo D Sontag. Turing computability with neural

nets. Applied Mathematics Letters, 4(6):77–80, 1991.

96

[128] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. Nature, 529(7587):484–489, 2016.

[129] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[130] Heung-Il Suk, Chong-Yaw Wee, Seong-Whan Lee, and Dinggang Shen. State-

space model with deep learning for functional dynamics estimation in resting-

state fmri. NeuroImage, 129:292–307, 2016.

[131] Sigurlaug Sveinbjornsdottir. The clinical symptoms of parkinson’s disease.

Journal of Neurochemistry, 139:318–324, 2016.

[132] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[133] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

[134] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1701–1708, 2014.

[135] Caroline M Tanner and Samuel M Goldman. Epidemiology of parkinson’s dis-

ease. Neurologic clinics, 14(2):317–335, 1996.

[136] Carlos Téllez, M Leonor Bustamante, Pablo Toro, and Pablo Venegas.

Addiction to apomorphine: a clinical case-centred discussion. Addiction,

101(11):1662–1665, 2006.

[137] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-

ent by a running average of its recent magnitude. COURSERA: Neural networks

for machine learning, 4(2), 2012.

97

[138] Hiroki TODA, Hidemoto SAIKI, Namiko NISHIDA, and Koichi IWASAKI.

Update on deep brain stimulation for dyskinesia and dystonia: A literature

review. Neurologia medico-chirurgica, 56(5):236–248, 2016.

[139] Eduardo Tolosa, Maria J Mart́ı, Francesc Valldeoriola, and José L Molinuevo.

History of levodopa and dopamine agonists in parkinson’s disease treatment.

Neurology, 50(6 Suppl 6):S2–S10, 1998.

[140] Claire L Tomlinson, Rebecca Stowe, Smitaa Patel, Caroline Rick, Richard Gray,

and Carl E Clarke. Systematic review of levodopa dose equivalency reporting

in parkinson’s disease. Movement disorders, 25(15):2649–2653, 2010.

[141] Evanthia E Tripoliti, Alexandros T Tzallas, Markos G Tsipouras, George Rigas,

Panagiota Bougia, Michael Leontiou, Spiros Konitsiotis, Maria Chondrogiorgi,

Sofia Tsouli, and Dimitrios I Fotiadis. Automatic detection of freezing of gait

events in patients with parkinson’s disease. Computer methods and programs

in biomedicine, 110(1):12–26, 2013.

[142] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu,

Oriol Vinyals, and Alex Graves. Conditional image generation with pixelcnn

decoders. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,

editors, Advances in Neural Information Processing Systems 29, pages 4790–

4798. Curran Associates, Inc., 2016.

[143] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond

Mooney, Trevor Darrell, and Kate Saenko. Sequence to sequence - video to

text. In The IEEE International Conference on Computer Vision (ICCV), De-

cember 2015.

[144] Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. A primer on kernel

methods. Kernel Methods in Computational Biology, pages 35–70, 2004.

[145] Jens Volkmann, Alberto Albanese, Angelo Antonini, K Ray Chaudhuri, Carl E

Clarke, Rob MA de Bie, Günther Deuschl, Karla Eggert, Jean-Luc Houeto,

Jaime Kulisevsky, et al. Selecting deep brain stimulation or infusion therapies

in advanced parkinsons disease: an evidence-based review. Journal of neurology,

260(11):2701–2714, 2013.

98

[146] Jason E Weston. Dialog-based language learning. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 29, pages 829–837. Curran Associates, Inc., 2016.

[147] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-

lan Salakhutdinov, Richard S Zemel, and Yoshua Bengio. Show, attend and

tell: Neural image caption generation with visual attention. arXiv preprint

arXiv:1502.03044, 2(3):5, 2015.

[148] William R Young, Lauren Shreve, Emma Jane Quinn, Cathy Craig, and Helen

Bronte-Stewart. Auditory cueing in parkinson’s patients with freezing of gait.

what matters most: Action-relevance or cue-continuity? Neuropsychologia,

87:54–62, 2016.

[149] Heidemarie Zach, Arno M Janssen, Anke H Snijders, Arnaud Delval, Murielle U

Ferraye, Eduard Auff, Vivian Weerdesteyn, Bastiaan R Bloem, and Jorik Non-

nekes. Identifying freezing of gait in parkinson’s disease during freezing provok-

ing tasks using waist-mounted accelerometry. Parkinsonism & related disorders,

21(11):1362–1366, 2015.

[150] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,

abs/1212.5701, 2012.

99

	Introduction
	Motivation
	Background
	Objectives
	Framework
	Related work

	Deep learning
	Convolutional neural networks
	ConvNets for image recognition
	ConvNets for sequence data
	Application of ConvNets to biomedical data

	Recurrent neural networks
	Application of RNNs to biomedical data
	Application of RNNs to human activity recognition using wearable sensors

	Regularization for DL models
	Parameter norm penalties
	Early stopping
	Data augmentation
	Dropout
	Zoneout

	Training DL models
	Architecture notation

	Data collection and processing
	Data collection
	Data overview
	Offline data cleansing and signal processing
	Data cleansing
	Signal processing
	Patient data balancing

	Data representation
	Windowing
	Spectral window stacking

	Data augmentation

	Architecture and training parameters
	1D-ConvNet
	Convolutional layers
	Hidden dense layers
	Output layer

	1D-ConvLSTM
	1D-ConvGRU
	Structures comparison

	Experiments
	Implementation and technologies
	Machines' specs
	Programming tools

	DL training and evaluation settings
	Weights initialisation
	Activations
	Error loss
	Optimiser
	Minibatch training
	Regularization
	Training data feeding strategies
	Evaluation data feeding strategies

	Evaluation
	Reproduction of the state-of-the-art approaches
	Data representation and preprocessing for reproducing the approaches
	Implementation of the feature extractions

	Shallow ML experiments
	Shallow ML algorithms implemented
	Shallow ML training and evaluation

	Results and discussion
	Comparison among DL approaches
	Data representation
	1D-ConvNet
	1D-ConvLSTM
	1D-ConvGRU
	Discussion

	Comparison among shallow ML
	Comparison between DL and shallow ML approaches

	Conclusions
	Bibliography

