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Abstract

Service robotics is a fast-growing field that attracts interest from both aca-
demic and industrial community. In particular, assistive robotics targets
the healthcare domain that struggles with increased costs of care and lack
of nursing staff. Assistive robots have an enormous potential to improve
the life quality of patients with reduced mobility by providing assistance
with activities of daily living, such as dressing. However, very few of these
robots can be found in real commercial settings. One of the reasons is the
complexity of human-robot interaction (HRI) with non-expert users, which
was the main motivation for this work.

The main contribution of the presented work is the development of an
HRI framework that allows an autonomous robot to interact with the users
in order to assist them to dress. Several algorithms that rely on speech
and motion recognition were developed. In particular, the algorithms for
recognition of voice commands, gestures and body postures were used to
infer user’s attention and intentions during dressing. Additionally, a user
adaptation method, which consist of pointing calibration and robot position
adjustment algorithms, was proposed to improve the robot task performance
and reduce the users’ overall effort and frustration. The algorithms were
implemented on a robot manipulator arm equipped with two RGB-D cam-
eras and a microphone array. The integration of the entire robotic system
was done in Robot Operating System (ROS), which allows modular pro-
gramming for easier integration of hardware and software components. The
robotic system was evaluated in a series of experiments with users, with the
goal of assisting them to put on a shoe. Several metrics were used to com-
pare the performance and workload of the users with and without previous
robot adaptation.
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Chapter 1

Introduction

Service robotics is a fast-growing field in various application domains. This
work focused on assistive robotics in the healthcare domain, in particular,
with robots assistants with activities of daily living for people with reduced
mobility.

1.1 Motivation

Worldwide, the human population is constantly growing while the opposite
trend was reported in the more developed regions. By 2050, the world
population is expected to increase by 2 to 4 billion people [1]. This growth
will have a profound demographic consequence: while in 2000, 10 percent
of the world’s population was over 60 years old, by 2050 this proportion
will have more than doubled. Fig. 1.1 shows population statistics for some
countries on different continents.

Aging societies struggle to maintain the quality of living, especially for
their senior members. Due to increased cost of healthcare and lack of profes-
sional carers, the highest burden falls on the family members. Older adults
often suffer from age-related physical and cognitive impairment. Some stud-
ies report that more than half of the patients 75 years or older need assistance
with Activities of Daily Living (ADL) [2].

Some other groups of patients, such as the ones that suffered from spinal
cord injury (SCI) or stroke, are often in need of assistance with ADL. World-
wide, there are 250-906 patients with SCI per million inhabitants; traffic
accidents and aging are reported as two main causes of SCI [3]. The World
Health Organisation (WHO) reported that 15 million people suffer from
stroke each year, of which one third remains permanently disabled [4]. The
result is a reduced physical mobility that affects the ability for independent
living and increases the reliance on caregivers.

While human carers cannot and will not be replaced, assistive technolo-
gies can support humans, improving the life quality for both older adults



> Age 60 2000 2050 China 6.9% 22.7%
World 10.0% 21.4% India 7.5% 20.1%
Japan 23.3% 42 496
Belarus 19.3% 3760 Myanmar 6.8% 20.5%
Germany 23.2% 34,55
Italy 24.1% H0.6%0 Australia 16.4% 29.9%
Netherlands 18.2% 30.7% Tiji 5.7% 22.7%
Slovenia 19.2% 41.5%
Egypt H.8% 18.7%
United States 16.1% 25.5% Iran 6.40% 24.8%
Mexico 6,99 26.2% Jordan 4.60% 19,00
Brazil 7.8% 25.9%
Colombia 6.9% 22.7% Botswana 4.2% 6.0%
Ethiapia 4.06% 7.7%
Mali 3.9% 5.304

Figure 1.1: Population statistics for typical selected countries worldwide. Source: United Nations
Population Division.

and their caregivers [5]. Assistive robots, in particular, can help patients
with the recovery and compensate for increased costs of care and lack of
nursing staff [6, 7]. The potential to prolong independent living of older
adults and improve quality of living of patients with reduced mobility is
the main motivation of this work. Assistive robots may possess social skills
making them more capable in helping patients [8, 9, 10]. In some cases,
users may prefer robot assistance to human assistance [11].

The present work was developed under the framework of the I-DRESS
project!, which aims to develop a robotic system for proactive assistance
with dressing to users with reduced mobility. In my work, the final system
consisted of a highly dexterous robot manipulator equipped with sensors for
multi-modal human-robot interaction. By using speech and gesture recog-
nition, the robot was able to assist the user with a dressing task.

1.2 Use-case scenario

The scenario of this study addressed the daily activity of putting on a shoe to
a person seated at a bedside. The user is presumed to have reduced mobility,
with partial control over his/her legs: the person can lift the legs and move
the feet properly. Recognition of mutual intentions, both user’s and robot’s,

'I-DRESS project website: https://www.i-dress-project.eu/



is required for a natural human-robot interaction [12]. Therefore, in this
study the interaction is performed using two different modalities: speech
and gesture recognition. The dressing assistance was implemented on a
Barrett’s 7-DOF Whole Arm Manipulator (WAM) robot. Users experienced
less workload when interacting with a single-arm robot [13] rather than
two robot arms. The WAM robot is equipped with a depth camera and a
microphone array to track the user’s activity and decide when and how to
assist.

The user may choose from a set of different shoes, using either voice
commands or gestures, or a combination of both (diectic expressions). The
robot’s task is to pick up the selected shoe and bring it close to the user,
so he or she can reasonably comfortably put the foot inside. People vary
significantly in their skills, culture, habits, behaviours, etc., and these factors
affect their choices and preferences. In my work, I proposed adaptation to
users as a method to improve robot’s performance. Through interaction,
users are allows to teach the robot their preferences during the dressing
task. The final action of inserting the foot inside the shoe is performed by
the user, and it marks the end of the task.

1.3 Main contributions

The main goal of this work is to develop and evaluate an autonomous robotic
system that assists a person in putting on a shoe. To successfully provide as-
sistance with a dressing task, a robot requires a set of skills. From studying
human behaviour of assisting another human to dress, it is obvious that a
previous knowledge about the task and the environment is required. Specif-
ically, in order to assists a patient to put on a shoe, the caregiver needs to
know the location of the available shoes and the patient’s foot. Moreover,
the interaction is developed using scenario-specific vocabularies of spoken
utterances, gestures, and body postures. The work defined several research
and development objectives, which also represent the main contributions:

e To implement algorithms for speech recognition and text-to-speech
synthesis. Verbal interaction allows the user to give commands to the
robot; it also allows the robot to inform the user about its current
state, or suggest a necessary action to the user.

e To develop algorithms for gesture and body posture recognition. For
this, I implemented a motion tracking algorithm that provides the
position and orientation of the user’s body parts, such as the foot or
the hand.

e To implement an algorithm for object color segmentation. In the sce-
nario, shoes were marked with different colors to allow their recognition
and localization.



e To develop an interaction framework that integrates all above-mentioned
algorithms to recognize user’s attention and intentions, and provide
current robot state with a required dressing action.

e To implement the interaction framework on a commercial Barrett’s
7-DOF Whole Arm Manipulator (WAM) robot, equipped with a grip-
per and sensors. The implementation was done in Robot Operating
System (ROS), which became a standard framework for development
of open-source robot applications.

e To perform the final system evaluation through experiments with users.
The system was evaluated using a set of quantitative and qualitative
metrics to measure performance and workload



Chapter 2

State of the art

So far, there are no commercial robot assistant in dressing available on
the market. The presented literature overview provides an insight into the
service robotics domain, and focuses on research in robots applied to assisted
dressing. Finally, a study of the state of the art in multi-modal human-robot
interaction is presented.

2.1 Service robotics

A service robot can be defined as a robot that performs useful tasks for hu-
mans or equipment excluding industrial automation application [14]. There-
fore it is not the hardware that distinguishes an industrial robot from a ser-
vice robot, but the application domain. According to Silicon Valley Robotics
[15], the number of successful service robotics companies is still very lim-
ited. The main challenges in the field are associated with the difficulty of
implementing autonomous behaviors with the required knowledge of con-
texts, safety, and compliance. In fact, the current research in this field aims
to make them safe for people, easy to teach by non-expert users, able to ma-
nipulate both rigid and deformable objects, and with the ability to adapt
in non-structured and dynamic environments [16]. Still, one of the greatest
challenges of service robotics is the Human-Robot Interaction (HRI).

HRI is an interdisciplinary research field that puts together areas such as
robotics, social and cognitive sciences, medicine, and neuroscience, among
others. The interaction with humans can provide social capabilities to ser-
vice robots. More specific within the field is assistive robotics, that provides
assistance to human users [17]. Assistive robots are getting much attention
nowadays due to the advances in artificial intelligence and manufacturing of
more capable robots. A robot’s physical embodiment, its appearance, and its
shared context with the user, are fundamental for creating a time-extended
engaging relationship with the user. The research in SAR has several ap-
plication domains identified: care of older adults, care of individuals with



physical recovery /rehabilitation and training needs, or care of individuals
with cognitive and social disabilities.

It is clear that SAR presents a huge potential for development of our
society, but it also faces the challenges listed before. The communication
between robot and human, such as through speech or gestures, plays a crucial
role, making the robot to appear more social and natural [18]. Some recent
studies have employed service robots as assistants for ADL such as cleaning
[19] or cooking [20].

However, dressing assistance remains a challenging task. Although it is
still an open field for robotics, this is one of the basic assistance activities in
daily life for disabled and older adults. Indeed, during the assisted dressing,
robots must not only interact with the assisted person (whose posture vary
during the assistance), but also handle non-rigid clothes. Therefore, the
robot is required to adapt to user’s motion, as well as to manipulation of
soft objects.

2.2 Assisted dressing

Assisted dressing received little attention in robotics research. Early studies
proposed assisted dressing on a mannequin: the goal was to pull a T-shirt
over the mannequin’s head using a dual-robot arm [21]. During the as-
sistance, the state of the T-shirt was recognized in real-time by tracking
markers located on its collar and sleeves. The same authors extended this
work by using a depth camera to detect and track the T-shirt [22]. Later
studies focused on the interaction of the robot and non-rigid garments dur-
ing dressing. A framework based on reinforcement learning was proposed
for learning of the motor skills for cloth manipulation [23]. A robot was re-
quired to dress itself by putting its two arms into the corresponding sleeves
of the T-shirt. In [24], the reinforcement learning was again applied to dress
a T-shirt to a mannequin using topological coordinates, which describe rela-
tionships between the mannequin’s posture and the estimated T-shirt state.
Learning motion tasks in a real environments with non-rigid objects does
not only require a reinforcement algorithm, but also a compliant robot con-
troller for safety. In [25] these parts were unified into a framework in order
to learn the safety-critical robotic task of wrapping a scarf around a man-
nequin’s neck. The scenario with a mannequin has a limited utility for real
world applications because its position is always fixed. The obtained results
are difficult to generalize when applied to dynamic human postures. In ad-
dition, the reinforcement learning, that was commonly used to teach robot
new motions, requires multiple trials and errors, resulting in potential risks
for user’s safety.

Guided by the fact that dressing tasks should deal with dynamic user’s
poses, Yixing Gao et al. [26] focused on tracking the user’s body and building



personalized user models. The dressing application was designed for users
with upper-body mobility limitations, who were assisted by a robot to put
on a sleeveless jacket. Similarly, Paulo Costeira et al. [27] proposed an
approach for personalized dressing assistance that allows the robot and user
to take turns when moving, taking into account user’s limitations. Although
these studies proposed adaptation to the user’s needs and limitations, they
did not consider any interaction with clothes.

Recent work by Kimitoshi Yamazaki et al. [28], includes both cloth
interaction and personalized assistance for users. In their experiments, a
humanoid robot assisted users in putting on a pair of trousers; users started
the task in a seated position. The state of the trousers was estimated us-
ing an optical flow method using image streams [29]. The consideration of
manipulation failures during the dressing, and recognition of the type of
failure were one of the main contributions of this work. These capabilities
play a crucial role in practical applications due to the difficulty inherent in
controlling the fluid motions of the clothes.

Finally, Gregorio Chance et al. [30] proposed a multi-modal framework
for a compliant robot arm in a dressing jacket task with a mannequin. Robot
end-effector trajectory planning used the estimation of the mannequin’s
arms joints position obtained from reflective markers attached to the joints.
A failure-detection method that used torque feedback and sensor tag data
was also developed. A vocabulary of speech commands was implemented
allowing the user to successfully correct detected dressing errors. A simi-
lar approach was used to develop a multi-modal interaction framework in
this current work. These HRI modalities, without the implementation of
complex learning algorithms, have been applied successfully to a robot for
dressing assistance.

Summary of relevant publications is shown in Table 2.1, providing details
about the methodology, experiments with users and evaluation metrics.

2.3 Multi-modal human-robot interaction

2.3.1 Speech recognition

Humans commonly use Natural Language (NL) to interact in the social
context. This was the main motivation behind the development of a speech
interface for the robot assistant in dressing. Speech provides a natural and
intuitive way to express intentions or issue commands to a robot, but it also
allows receiving robot’s feedback.

Speech recognition (SR) has become a valuable industrial tool. Hardware
and software system developers, consumer product designers, researchers,
and innovative computer users are creating speech-recognition applications
that cover many domains [31]. Several SR interfaces have been widely ap-
plied to robot systems [32, 33, 34, 35, 36]. Most of these studies focused



s . Application User Evaluation
Publication Domain Methodology Tests Metrics
Eolovaktameii Jar . . -Reinforcement learning -Reward function from learning
2011 T-shirt Dressing . No . .
[21] -Cloth state recognition -Trajectory motion
Nishanth Koganti et. al. Cloth state -Estlmathn of human-cloth _Accuracy of the detected
2013 . . relationship using topology No
estimation . state
[22] coordinates
Takamitsu Matsubara et. al. —Remforcemegt learning . .
. . -Representation of the - Reward function from learning
2013 Cloth interaction . . . No X .
23] robot-cloth relationship using - Trajectory motion
topological coordinates
—_Rlsénfrz;cccnr?:trilct)r}C:;rtancg - Reward function from learning
Nishanth Koganti et. al. p . . . - Robustness of ellipse fitting
. . human-cloth relationship using .
2014 T-shirt dressing topological coordinates No algorithm
[24] YPO"0gICE . - Accuracy of the T-shirt detected
- Ellipse fitting algorithm for stat
T-shirt state state
Yixing Gao et. al ) - Real-time human AuApper—body - Accuracy of the pose
2015 Jacket dressing pose recognition Yes estimation
[26] - User modelling
Steven D. Kleel et. al. Personalized - Algorithm to divide the - Number of iterations in
2015 assistance in hat dressing task and plan robot Yes the algorithm
[27] dressing motion - Execution time
Kimitoshi Yamazaki et. al. . . - Success rate of the matching
2013 Cloth state - Dynamic state matching No state
[29] estimation for cloth state - Accuracy of the matching
state
- Dynamic state matching for . .
Kimitoshi Yamazaki cloth state - Success rat:tziethe matching
2016 Trousers dressing - User’s legs estimation Yes .
. - Success rate of the dressing
[28] - End-effector trajectory task
planning
Greg Chance et. al. - Trajectory planning
2016 - Safety and close-proximity
Jacket dressing manipulation No -Time of dressing performance
- Failure detection
[30] - Human-robot interaction

Table 2.1: Summary of the most relevant studies in assisted dressing




applications for mobile service robots that used predefined vocabularies.
Text-to-speech has been applied to robots as feedback to the user [37]. The
SR technology has also had a significant impact on the healthcare domain
[38], allowing healthcare providers to operate more cost-efficiency while pro-
viding a better level of patient care [39]. Some notable applications include
replacement of medical transcriptions [40] and patient monitoring [41].

In the assisted-dressing context, SR can provide a natural way to com-
municate with, teach, and correct the robot from possible failures. However,
contributions in this domain have so far been limited to the recognition of
predefined spoken commands [30].

In this work, SP was used as a powerful interactive tool allowing two-way
human-robot communication, either in the form of spoken utterances or in
synergy with gesture interface to create the so-called deictic expressions (see
Section 3.2.1)

2.3.2 Motion recognition

Analysis of human behaviour through visual information has captured the
attention of several computer science communities. Human motion tracking
was initially achieved via images from a conventional camera; however the
arrival of depth sensors, such as Microsoft Kinect, have made a new type of
data available [42]. Much of the existing work focuses on body part detection
and pose estimation, [43, 44, 45, 46], posture recognition [47] and gesture
recognition [48, 49, 50]. These methods provide the basis for effective and
time-extended HRI. Some relevant application include robot navigation [51],
or awareness of user’s attention [52].

Human pose recognition has also found its way to applications in health-
care domain. Monitoring of older adults [53] and coaching during physical
exercises [54] were some of the target applications.

For assistance in dressing, recognition of human poses is required not
only to successfully accomplish the task, but also to ensure safety in the
close interaction. Motion recognition can provide useful information about
the user’s attention and intentions. For instance, if during the shoe-dressing
scenario the user pulls back the foot, it may suggest that the the user does
not want to be dressed in that moment. Indeed, most of the studies listed in
Table 2.1 considered pose recognition as the unique way to interact with the
robot. In this work, human motion recognition was used for user tracking,
pointing recognition and posture recognition.

2.3.3 Integration of interaction modalities

A multi-modal interface has a distinct advantage over a single interaction
modality in that it can effectively reduce recognition uncertainty, and there-
fore improve the robustness of the system [55]. Various methods for pro-



gramming of interactive systems have been proposed [56, 57]. Previous
studies have shown that the robots capable of interacting through speech
and gesture have more flexibility in performing the tasks that require close
HRI [58, 59, 60], and are more efficient in recognizing the user’s intentions
[61]. Multi-modal interfaces in the healthcare domain have already been
applied to assistive surgery [62] and assistance with ADL to older adults
[63, 64].

In this work, a framework that combines speech and motion recognition
was developed and evaluated in the assisted-dressing scenario. It is a unique
system-integration effort and as such represents a contribution beyond the
state of the art.

10



Chapter 3

Methodology

The proposed system consists of hardware and software components and
their integration required a significant development effort. The presented
methodology describes the technical aspects of the system, along with the
developed algorithms that provided different robot features. Some of the
algorithms were used off the shelf, but still required implementation and
integration with other system components. Finally, the details about the
integration in Robot Operating System (ROS) are presented.

3.1 Hardware

The development of the robot assistant in dressing required integration of
several hardware and software components. The central part of the systems
was a Barrett’s 7-DOF WAM robotic arm equipped with an in-house devel-
oped gripper for shoe grasping. Two Microsoft Kinect sensors, an XBOX
360 and a Kinect One, were used for shoe color recognition and user track-
ing, respectively. Three personal computers (PC) were used to run the
whole system. A PC running Ubuntu 12.04 LTS 64-bit, powered by an Intel
quad-core Q9550 CPU @ 2.83GHz x 4 with 8GB of RAM was used to run
most of the implemented algorithms and to connect the XBOX 360 Kinect
depth camera. The second PC running Ubuntu 12.04 LTS 64-bit powered
by an Intel Core i5-2400 CPU @ 3.10GHz 4 and 4 GB of RAM was used
to control the WAM robot and the gripper, having all the necessary drivers
installed. The third PC running Windows 8.1 Pro 64-bit, powered by an
Intel Core i7 X990 @ 3.47GHz and 2.80GHz and 16GB of RAM, processed
the data related with the speech recognition and user tracking. The data
was obtained from the Kinect One camera using the Kinect for Windows
SDK 2.0. The three computers were integrated using the ROS platform and
communicated via laboratory Ethernet. A diagram showing all the system
components and their communication is shown in Fig. 3.1.

11
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Figure 3.1: Hardware diagram

Figure 3.2: Workspace of the Barrett’s 7-DOF WAM, isometric view

3.1.1 Robot manipulator arm

The manipulation of the shoes and the dressing assistance were performed by
a WAM robot!, which has a generally spherical workspace of approximately
2m in diameter, as seen in Fig. 3.2. Its seven degrees of freedom allow a
high flexibility in reaching any point inside its workspace.

3.1.2 RGB-D cameras and microphone array

A first-generation XBOX 360 Microsoft Kinect sensor, from now referred as
Kinect 1, was used for the shoe color recognition and location. Its detection
range is from 0.4m to 4m, with a vertical viewing angle of 43°and the hori-
zontal viewing angle of 57°. The image resolution in both the depth stream
and the color stream are respectively 320x240 and 640x480 with a rate of

30fps.
User tracking, speech, pose and gesture recognition were performed by

"WAM specifications: http://www.barrett.com/DS_WAM.pdf
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Version 1 Version 2

Depth Range 0.4m - 4.0m 0.4m - 4.5m
Detection Range 0.8m - 4m 0.5m - 4.5m
Color Stream 640x480 1920x1080
Depth Stream 320x240 512x424
Infrared Stream None 512x424
Audio Stream 4-mic array 16kHz  4-mic array 48 kHz
USB 2.0 3.0

FOV 57 °H, 43 °V 70°H, 60°V
Tilt Motor Yes No

Table 3.1: Specifications of first and second-generation of Microsoft Kinect

Figure 3.3: Gripper in different states: open (left) and closed (right)

a second-generation Microsoft Kinect sensor, from now referred as Kinect
2. The user detection range is from 0.5m to 4.5m, improved from the first
generation (which needs more than 0.8m), with a vertical and horizontal
viewing angle of 60°and 70°respectively. The color and depth resolutions
are also improved with respect to its predecessor, which improves the overall
user-tracking performance.

The Kinect 2 has integrated four microphones as a microphone array
that operates with a frequency of 40kHz for the speech recognition and
sound localization.

The main specifications for both cameras are given in Table 3.1.

3.1.3 Robot gripper

A 3D printed in-house made gripper was attached to the last joint of the
WAM robot for object grasping, i.e. grasping of the shoes. The gripper has
four fingers, two on each side, which are opened and closed with a servo
motor. When closed, the gripper’s fingers make a physical contact, and
when open, they are separated 5.5cm as shown in Fig. 3.3

The separation of the fingers leaves enough room to securely grasp a
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Figure 3.4: Separation distance of the gripper’s fingers for picking a shoe

ribbon attached to each shoe, as shown in Fig. 3.4. More details about the
ribbons attached to the shoes are provided in Section 3.2.4.

3.2 Algorithms

3.2.1 Speech recognition

Speech recognition allowed the robot to receive spoken commands to either
start or finish the task, be corrected by the user or learn user preferences.
The implementation of the speech-recognition interface was made through
the Microsoft Speech Platform SDK 11 engine, a speech recognizer in Win-
dows, which provides text transcriptions from spoken utterances. The mi-
crophone array from Kinect 2 acted as the input for the audio stream. It
provided better sound quality and a larger detection range than a single
microphone of similar technical features.

The speech-recognition process can be thought of as having a front-
end and a back-end part. The front-end part processes the audio stream,
isolating sound segments, and converting them into a series of numeric values
that characterize the vocal sounds in the signal. The back-end part is a
specialized search engine that takes the output from the front-end part and
perform a search across three databases [65]:
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e Acustic model: The acoustic model is represented by the acoustic
sounds of a specific language. Kinect for Windows SDK includes a
custom acoustical model that is optimized for the microphone array
inside the Kinect 2.

e Lexicon: The lexicon is a large set of words of a given language, which
provides information on how they are pronounced.

e Grammar model: The grammar model represents the rules by which
the words are combined into specific domains.

A grammar is usually customized to recognize the utterances specific
for the given application, rather than a general dialog manager. Grammars
are at the core of speech recognition and can affect the recognition accu-
racy. Microsoft Speech Platform SDK 11 supports the option of including
grammars defined in XML-format?.

In the present work, a grammar model was created in XML-format and
loaded by the recognizer for the specific task of assisted dressing. In gram-
mars, it is convenient to link each predefined utterance with a semantic tag,
which can be retrieved when the utterance is recognized. An example of the
utterances and their associated semantic tags used for the assisted-dressing
task is given in Table 3.2 as well as their semantic tags. Several utterances
may be labeled using the same semantic tag: e.g. the words ”“begin” and
”start” can be recognized as the same tag ”start”. These tags represent
the actual output of the speech-recognition algorithm when an utterance is
recognized, and they will be used in Section 3.2.9.

The speech-recognition algorithm is constantly running: when an utter-
ance is recognized, the algorithm returns its semantic tag in the form of a
text string.

3.2.2 Speech synthesis

Robot feedback is an important aspect of human-robot interaction as it
allows the user to understand the robot current state and actions. This
contributes to the user’s safety, but also allows the user to correct the robot’s
behaviour. In this work, a speech-synthesis algorithm was implemented to
inform the user about the progress of the dressing task and allow more
natural interaction.

The speech-synthesis algorithm allows to know when a certain stage of
the task is completed or what voice command was actually recognized by the
speech-recognition algorithm. It is also required to inform the user about
the necessary actions during the dressing assistance, for instance, to extend
the foot towards the robot.

2Grammar models documentation: https://www.w3.org/ TR /speech-grammar/
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Spoken command

Semantic tag

"begin” start
’fit pointing” pointing
"take this shoe” take
“take the blue shoe” blue
"take the red shoe” red
“take the green shoe”  green
“take the yellow shoe”  yellow
7dress me” dress
"move back” back
"move forward” forward
"move up” up
"move down” down
7stop” stop
"that’s ok” ok
7abort” abort

Table 3.2: Spoken commands with associated semantic tags

The speech synthesis was integrated using Python and the ¢7'T'S package
that uses Google’s Text-to-Speech API. A text string is provided as input,
and the gT'TS package converts it into speech transcription in mp3 format.
The retrieved mp3 file containing the speech is played by speakers connected
to one of the Ubuntu PCs with the pygame package installed.

Overall, the messages used for robot feedback can be grouped in three
categories. The first type of messages was used to inform the user about the
current robot state or required user action. Examples of messages of this
type are given in Table 3.3.

Some messages were implemented for other reasons, for example when a
recognition problem occurs. If the user requests the red shoe and the robot
cannot recognize it, the message "cannot recognize the red shoe” informs
the user about the problem. These kind of messages are meant to inform
about technical problems. Other messages suggest that an unexpected user
action confronts with the system logic: for instance, if the user says ”dress
me” without previously selection a shoe; the robot’s response is ”I haven’t
picked up a shoe”. This type of messages is used to inform the user that the
predefined procedure has not been properly followed. For the sake of clarity
and concise presentation, not all used messages are listed here.

3.2.3 User tracking and following

User-motion recognition was the second component of the proposed human-
robot interface. The ability to track and follow user’s body parts, such as
a foot or a hand, was a requirement for the assisted dressing task. Specif-
ically, the location and orientation of the foot were necessary for a proper
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Fixed feedback messages

"ready to help”

"taking the #color shoe”

7changing to the #£color shoe”

”the #color shoe is picked up”

"please, approach your foot”

”approaching the foot”

“you moved away your foot”

"moving away”

Zapproaching more”

"moving up”

"moving down”

”stopped, waiting for the user to finish the task”
“the task is finished, thank you”

”please point to the #color shoe and say take this shoe

Table 3.3: Example of messages used in robot feedback. The keyword #color can be substituted
by 7blue”, ”red”, "green” and “yellow”.

positioning of the shoe, but also for the collision avoidance in order to keep
the interaction safe. On the other hand, the location of the arm joints was
necessary to recognize pointing gestures, which was performed by the user
when selecting a shoe.

User tracking was performed using the Kinect for Windows SDK 2.0, a
library in Windows, developed for the Kinect 2. It is a two stage process:
first, a depth map is computed using the infrared sensor and the time-
of-flight analysis; secondly, the user joints are segmented using a trained
randomized decision forest algorithm [66], mapping depth images to body
parts, as shown in Fig. 3.5.

The algorithm is able to recognize up to 6 users in the field of view of
the Kinect 2, from which up to 2 users can be tracked in detail, tracking
their movements in real time. The data obtained from the algorithm is a set
of 25 joints per user [67], as illustrated in Fig. 3.6. Each joint is represented
by its location and orientation with a quaternion, respect to the Kinect 2
reference system shown in Fig. 3.7.

Subsequently, the user’s joints were transformed to the WAM robot ref-
erence system for the final integration. The calibration of the Kinect 2
and the WAM robot was important for accurate tracking and robot motion
planning (for details see Section 4.1). The pointing-recognition and posture-
recognition algorithms that rely on accurate user tracking are described in
Sections 3.2.5 and 3.13.
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Figure 3.5: User-tracking process

3.2.4 Object color segmentation

Object recognition and manipulation are challenging problems, that require
finding not only the location and the orientation of the object but also its
gripping points. For example, in the assisted-dressing scenario, the gripper
should not cover the opening of the shoe preventing the user to put the foot
inside; instead, the gripping strategy should allow comfortable dressing.

Object manipulation was not among the objectives of this work. There-
fore, for the proposed assisted-dressing scenario, shoe manipulation was sim-
plified by attaching a ribbon to the top a shoe, as shown in Fig. 3.8, such
that the gripper can grasp the shoe from above. All ribbons were 3cmx17cm
in dimensions, and they had rectangular 3cmx6cm color markers placed in
the central segment of the ribbon. The markers allowed recognition and
location of the shoes by Kinect 1. The shoe considered for this work is a
crocs shoe commonly used by patients in hospitals.

A user was able to choose from a set of four crocs shoes that were used
in the experiments, and marked with blue, green, red and yellow markers,
and which are shown in Fig. 3.9. A color-segmentation algorithm provided
the location and the color of the recognized marker, which was used to find
the position of the shoe and its gripping point.

Streaming images obtained from the Kinect 1, as the one shown in Fig.
3.10, were processed by the OpenCV image-processing library to recognize
the markers in the image. The images obtained in RGB format were con-
verted to HSV format with the following range of values:

e Hue [0,179]
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Figure 3.6: Joints provided by the user-tracking algorithm

e Saturation [0, 255]
e Value [0, 255]

Since there are four markers, one for each shoe, four different colors must
be recognized. The chosen colors: blue, red, green and yellow, are defined in
Table 3.4 by a range of HSV values to allow the recognition. The colors in
the image were clustered according to their HSV values and their centroids

y

Z

Figure 3.7: Reference system of the Kinect 2
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Figure 3.8: Ribbon attached to the foot with yellow color marker

Hue Saturation Value
blue [97, 110] [70, 150] [100, 255]
red [167, 179] [150 ,220] [100, 255]
green [48, 58] [70, 130] [100, 255]
yellow [20, 30] [110, 170] [100, 255]

Table 3.4: HSV values for the recognition of the

were computed. Finally, the point cloud provided by Kinect 1 was used to
match the coordinates (z,y, z) of the computed centroid in the 3D space in
the Kinect 1 reference system, as shown in Fig. 3.11.

Every time that the user requested a shoe from the robot, the object-
color-segmentation algorithm was executed returning the set of the recog-
nized marker’s positions. These positions are later transformed into the
WAM robot reference system before performing the robot motion planning.
The calibration of the Kinect 1 and the WAM robot was important for
accurate shoe grasping. More details are in Section 4.1.
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Figure 3.10: Kinect sensor 1 view for the recognition of the shoes
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3.2.5 Pointing recognition

Pointing recognition was a second modality used for shoe selection and it
required a combination of speech and pointing gesture to form the so-called
deictic expressions. The reason for implementing two different modalities,
i.e. speech and pointing recognition, was to offer more flexibility to the
user. In fact, the reference to the color using speech seems to be easier
and simpler when distinguishing the shoes. However, the pointing gesture
provides an alternative solution in real life situations when the colors might
not be enough to discriminate different objects, e.g. when there is more
than one blue shoe. In this case, the user should point to the desired shoe
with the right arm and say ”take this shoe”. Once the voice command is
recognized, the algorithm computes the pointing target in the intersection
with the shoes plane. The selected shoe is the closest one to the pointing
target.

The computation of the target from the pointing gesture can be done
with some combinations of joints such as the wrist and the elbow, the wrist
and the shoulder, or the wrist and the head, providing good results [68].
The pointing-control interaction modality uses the location of the wrist and
the elbow joints to calculate the pointing target, as in [69, 70].

All following computations are performed in the robot reference system,
which is defined in detail in Section 4.1. Hence, let p. = (¢, Ye, ze) be the
position of the user’s elbow and p,, = (Zw, Yw, 2w) the position of the user’s
wrist, both locations obtained from the user-tracking algorithm (see Section
3.2.3). A straight line is computed using these two positions:

T =Te+ Nxy — xe)
= Ye + MYw — Ye) where X € R (3.1)
2 =2+ Mzw — Ze)
where A is the straight line parameter and can take any value. A general

definition of a plane in the 3-dimensional space is given by:

Ar+By+Cz+D =0 (3.2)

Figure 3.11: Reference system of the Kinect sensor 1
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In the proposed dressing scenario, the shoes are placed on a platform that
is parallel to the ground floor (z = 0), so in this case the equation 3.2 can
be reduced to z = h, where h is the height of the plane from the origin.

The intersection point between the straight line and the shoe plane pro-
vides the pointing target of the user p; = (¢, yt, 2¢), given by:

Ty = Te + Zhw_%;e(xw - xe)
Yt = Ye + %(yw - ye) (3'3)

Zt = h
Finally the closest shoe to the pointing target is selected. Let S =
{blue, red, green, yellow} be the set of the different shoes in the plane,
and p;, where ¢ € S, their location in the plane. These locations are ob-
tained from the object-color-segmentation algorithm described in Section
3.2.4. The closest shoe s € S from the target point is given by:

s = arg min[dis(p¢, ps)] (3.4)
ses

An illustration of shoe selection through pointing recognition is given in
Fig. 3.12. In the given example the closest shoe is the blue one, which is
the one selected by the user.

3.2.6 Posture recognition

The posture-recognition algorithm was developed to recognize the user’s
extended foot, and its contribution was twofold. First the algorithm con-
tributes to user’s safety. If the robot makes a forceful physical contact with
the user while approaching, the user is able to withdraw the foot, so the
robot can stop the task. The second reason is to know the user’s intention.
If the user wants to stop the dressing task for a moment, or does not want
to be dressed anymore, withdrawing the foot means that the intention of
the user to be dressed has hanged. The robot should not try to put on the
shoe when the user is not focused on the dressing task. This awareness is
essential in robot assistance, and for this specific task, the extended foot
plays a crucial role in the user’s intentions.

The posture recognition takes place after the robot picks up a selected
shoe and the user says ”dress me” to start the dressing part. From this
moment, the robot will wait for the user to extend the right foot in order to
start the approach and assist with dressing.

Some algorithms such as Dynamic Time Warping (DTW) [71] were con-
sidered at the beginning to recognize dynamic postures with time indepen-
dence. However, the final posture considered is static and therefore a more
simple algorithm could be applied. The recognition of the extended foot
posture was only performed on the right foot, and not the left one. Al-
though the same methodology could be applied to the recognition of the left
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Figure 3.12: Representation of the target point calculation

foot, the dressing task was limited to putting on the right shoe only. Further
details are given in Section 3.2.9.

The recognition is considered as a binary problem: the foot can be either
extended or not. This is done by computing the ankle position in the knee
frame reference using a transformation with the tf package in ROS®. To
determine whether the posture is recognized, the y coordinate of the ankle
position from the knee frame needs to be larger than the threshold 0.05m,
as shown in Fig. 3.13. For the opposite, i.e. when the foot is folded, the
posture is not recognized.

The algorithm is running all the time during the assistance, returning
whether the posture is recognized or not. This allows the robot to know in
any moment if the user’s foot is extended, allowing it to decide what to do
in each situation.

3tf transformations source:
http://wiki.ros.org/tf/Overview/Transformations
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Figure 3.13: Threshold of the posture recognition

3.2.7 Robot motion planning

The WAM robot movements were computing by the inverse kinematics algo-
rithm operating in the compliant mode, and contributed to the user’s safety.
In case of physical contact, the robot reduces the force applied against the
user. On the other hand, the inverse kinematics allows to move the last joint
WAM robot (where the gripper is attached) to a certain point in space, with-
out worrying about the positions of the WAM robot’s joints.

Some fixed positions of the robot were defined for the dressing task.
All positions are represented in the WAM robot reference system, which is
described in detail in the Section 4.1. The home position of the robot end-
effector was set to (z,y,2) = (0.1m,0m,0.2m) with the initial orientation
defined by the quaternion ¢ = (0,0,1,0), as shown in Fig. 3.14. With this
orientation, the gripper is facing down, ready to pick up a shoe. The home
position was chosen to avoid possible occlusions of the shoes in the Kinect
1 view.

When the user requests a shoe, the robot checks whether a shoe was
already taken or not. If no shoe was picked up, the robot moves to the
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Figure 3.14: Robot home position and kinect view from a front view of the scenario

position of the requested shoe making a trajectory through 3 waypoints.
These positions have the same location of the requested shoe in the xy
plane, but different heights: the first one at 0.20m, the second one at 0.10m
and the third one at 0.05m from the shoe, as shown in Fig. 3.15.

The first waypoint was chosen to avoid any possible collision of the WAM
robot arm with other shoes during the movement. The inverse kinematics
algorithm in the compliant mode achieves safer operation at the expense of
lower accuracy. Subsequently, the second waypoint was used for the WAM
robot to go down in the z direction with no deviation. The third waypoint
is where the gripper’s fingers are below the ribbon such that the gripper
may close and grasp the shoe. Once the shoe is picked up, the robot moves
through the same three waypoints to return to the home position, avoiding to
hit any other shoe during the movement. The initial location of the selected
shoe is stored, so that if the user requests another shoe, the robot can return
the picked-up shoe to its original location. When the robot places the shoe
by opening the gripper, it moves for the new requested shoe following the
three waypoints defined for the new location. The orientation of the gripper
was set to be perpendicular with the shoes in order to perform flawless

grasping.
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Figure 3.15: Three waypoints of the robot motion when picking and place a shoe

Figure 3.16: Way points for the picking phase

Finally, when the robot picks up the shoe selected by the user and after
recognizing a “dress me” command, it approaches the user’s foot. From the
home position the robot moves to a prudent distance from the ankle, which
is dyzy = 0.4m in the xy plane (taking into account the orientation of the
foot) and d, = 0.5m in the z axis, as shown in Fig. 3.16.

Computing the orientation of the extended foot in the zy plane is re-
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Figure 3.17: Convention used to compute knee-ankle angle in the robot frame of reference

quired for the motion planning of the WAM robot. This is done using
the ankle and knee joints provided by the user-tracking algorithm (Section
3.2.3). Although the foot joint is also provided, in practice its recognition
was unreliable.

The orientation of the extended foot is described by the angle formed by
the x axis and the straight line given by the ankle and the knee joints. Before
getting into more details, the convention followed for angles must be defined:
all angles were measured from the z axis, in the positive direction. In the
quadrants I and II, angles take positive values, and for the quadrants I1I and
IV, negative. Angles are computed from coordinates applying trigonometric
functions, however these functions are dependent on the coordinates signs.
Using the tan~! trigonometric function, wrong values are obtained in quad-
rants II and III, as summarized in Fig. 3.17. Then, different expressions are
required for these quadrants.

Let po = (%a,Ya, 2a) and pr = (2, Yk, zx) be the positions of the user’s
ankle and knee respectively. The position of the ankle with respect to the

knee pgk) is given as follows,

PP = py — i (3.5)

The angle formed between the knee and the ankle with the x axis is

(k) m if (:Egk) < 0) and (y((zk) > 0) (quadrant IT)

B =tan"! (ycgk)) +4 -7 if (x((zk) < 0) and (yt(zk) < 0) (quadrant IIT)

a

0 otherwise

(3.6)
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The cases when x((zk) = (0 are not represented in this equation, but are

considered in the same way by looking at the sign of the y((zk) coordinate.
With this angle and knowing the distance at which the gripper must be in
both the xy plane and the z axis, the robot position p, = (z,, y,, z,) is given

by equation 3.7

Ty = Tq + dyy cos 3
Pr =S Yr = Yo + dyysin 8 (3.7)
Zr = 2q + d

The WAM robot position is updating at all times, meaning that if the
user moves the foot, the robot will follow it from the predefined distance.

3.2.8 User adaptation

User adaptation was developed to provide personalized assistance to each
user. It consists of two algorithms: pointing calibration, and robot position
adjustment. Pointing calibration was developed to improve the accuracy
of pointing. On the other hand, the robot position adjustment was imple-
mented to improve the comfort of the users by placing the shoe at a chosen
distance from the foot. The use of adaptation allowed a personalized robot
setup for each user.

A Pointing calibration

Regarding the pointing-recognition algorithm described in Section 3.2.5,
problems can appear when the user aims to point a shoe that is surrounded
by others: for instance the green shoe in Fig. 3.9. Due to the fact that
the shoes might not be separated by a large distance, and that the user is
not presumed to be very accurate with the pointing gesture, the pointing
recognition algorithm can select a wrong shoe. In addition, the way to point
may differ from one person to another. For this reason, a pointing calibra-
tion method is proposed in order to adapt the pointing recognition for a
particular user.

The pointing calibration corrects the angle of the user’s pointing direc-
tion, seen in the shoe plane z = h (defined in Section 3.2.5), and formed by
the x axis and the straight line passing through user’s elbow and wrist, with
the origin in the elbow joint. The correction was meant to fit the pointing
target closer to the desired shoe. The convention followed for angles was the
same as followed in Section 3.2.7, shown in Fig. 3.17.

An specific case from a top view is shown in shown in Fig. 3.18. In the
given example, the user is trying to pick up the blue shoe but with out low
accuracy, pointing closer to the red shoe. The two black points represent
the user’s elbow and wrist locations. The pointing target p; is closer to
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Figure 3.18: Representation of the target point calculation

the red one in this case. The angle 6, . is formed by the elbow and the
wrist, taking the origin from the elbow. The angle 67, _ is given by the line
which connects the elbow and the blue shoe positions, from the elbow. In
the followed convention, these angles are negative. The pointing-calibration
algorithm aims to correct the pointing gesture of the user, and later to make
a correction from the 6}, . to the 0}, = angle to correct the position of the
target point p;.

Before correcting the user angle in the pointing recognition, a calibra-
tion by the user must be performed. The pointing-calibration algorithm
assumed that the user’s elbow was in a fixed position, or at least almost
static during the dressing assistance. First, a calibration must be performed
by the user in order to adjust the pointing gesture to the pointing recog-
nition. The procedure is the following: the user has to say first the voice
command ”fit pointing”. Then the robot requests the user to point out
all the different available shoes (saying the command “take this shoe” for
each shoe), in this case the blue, red, green and yellow shoes, in this order.
The method computes two angles for each shoe: the user angle and the
corrected angle of the shoe, both from the user’s elbow: 6 and €S where
s € {blue, red, green, yellow}.

For simplification, let pyser = (Tusers Yuser, Zuser) be the difference be-

30



tween the wrist and elbow positions: pyser = Puw—De, a0d Peor = (Tcors Yeors Zeor)
the difference between the shoe position and the elbow p.or = ps — pe. Thus,
the computation of the user angle § and the shoe angle 6 is given by
equations 3.8 and 3.9 respectively.

7w  if (Xyser < 0) and (Yyser > 0) (quadrant 1)
)—i— —m if (Tyser < 0) and (Yyser < 0) (quadrant III)

0 otherwise

0% = tan~?

( yuser

xuser

(3.8)

7w if (Teor < 0) and (Yeor > 0) (quadrant IT)
¢ = tan~? (ycor)—k tan~1 <M> — 7 if (Teor < 0) and (Yeor < 0) (quadrant IIT)

Tcor
Lcor

0 otherwise

(3.9)
where s represents the shoe color (s € {blue, red, green, yellow}). Now
it is assumed a linear relationship between the two set of angles 65 and 6.
The reason of this assumption is that the pointing gesture of the user is
presumed to be the same for all the shoes. A linear fitting is computed
between the two sets of angles in order to extract the linear parameters A

and B, given by:
0° = A0" + B (3.10)

The parameters A and B are stored and used to correct the pointing
target in future pointing recognitions. Every time the user uses the point-
ing gesture to select a shoe, the user angle 6 is computed using equation
3.8. Then the corrected angle 6¢ is retrieved applying the equation 3.10.
The pointing target must be shifted to the corrected angle: basically, polar
coordinates in the shoe plane z = h are applied, taking the user’s elbow as
the origin. First the distance of the pointing target is computed as follows,

d= \/(xt —ze)? + (Yt — Ye)? (3.11)

Finally the corrected target point p§ = (xf, yf, h) is computed:

2=h (3.12)

P = {xf = dcos 6

y; = dsin §°

The process of correction the pointing recognition is summarized in Fig.
3.19.

The calibration method was optional, therefore if no calibration was
performed by the user, the fitting parameters were set to their default values
A =1and B =0, resulting in 8¢ = §“. In that case, no correction was done
to the pointing target.
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Figure 3.19: Proccess of the pointing-recognition correction. First, the user angle 8% is computed
from the pointing gesture (left). Second, the corrected angle 6¢ is retrieved from the linear fitting
performed in the calibration (middle). Finally, the corrected angle is used to shit the pointing
target.

B Robot position adjustment

A predefined position of the robot when delivering the shoe may not be com-
fortable all the users. The user tends to perform as less physical effort as
possible during the assistance, and the position of the shoe may not be ade-
quate. For this reason, an adjustment algorithm for the distance between the
WAM robot position and the foot was developed. The user can modify the
robot position using the commands ”"move forward”, “move back”, "move
up” and "move down”, recognized by the speech-recognition algorithm de-
scribed in Section 3.2.1. Once recognized, the robot continuously moves in
the selected direction until the user says ”stop”. In this way, both distances
in the xy plane and z axis can be adjusted, making the autonomous robotic
system able to personalize the assistance for a given person. The adjustment
is performed once, such that the new distance to the foot is stored and used
for next assistance.

The process of the robot position adjustment is the following: let vy,
be the velocity at which the robot moves during the adaptation in the xy
plane and v, the velocities in the z axis. The position of the robot during
the adjustment is given by:

Zr(t) = Tq + (dpy + vgyt) cos b
Pr(t) = S Yr(t) = ya + (day + vgyt) sin b (3.13)
2r(t) = 24 + (d, + v,t)

When no adjustment is performed, the speeds values are set to zero by
default, such that the robot position p, returns the same position as in
equation 3.7
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When the command ”move forward” is recognized, the velocity in the
xy plane is set to vy, = 0.0lm/s and the velocity v, set to zero. The
0.01m/s value is meant to be slow enough taking into account the delay in
the speech recognition of the command ”stop”, which take approximately
one second. According to the equation 3.13 the robot moves away from the
foot along the direction formed by the knee and the ankle, following the
foot at the same time. This happens until the ”stop” command is recog-
nized and both velocities v, and v, are set to zero. The same process is
followed with the command “move back”, but now the speeds values are set
to vyy = —0.01m/s and v, = 0. In this case the robot approaches the foot
until the ”stop” command sets both velocities to zero.

The “move up” voice command set the following speeds values: vz, = 0
and v, = 0.0lm/s. The robot moves up along the z axis, until the ”stop”
command is recognized and set both velocities to zero. The same procedure
is performed with the "move down” voice command, but setting both ve-
locities to vyy = 0 and v, = —0.01m/s. In this way the robot moves down
along the z direction, until the ”stop” command set the speeds values to zero.

Taking into account the above description, if the assisted person first says
"move down”, and then "move forward”, the first command is canceled by
the second command, and the robot moves forward. This behaviour is the
same for all combinations of the four voice commands.

The position-adjustment algorithm offers the adaptability of the robot po-
sition with respect to to the foot, following equation 3.13. The adjustment
needs to be performed only once per user, such that adjusted position of the
robot is stored to be used during next assistance.

3.2.9 Decision module

To process all the information coming from previous algorithms, a Finite
State Machine (FSM) was implemented to deal with all the actions and de-
cisions made by the system. A diagram of the FSM is shown in Fig.3.20.
The FSM has a total of 8 states, which are: Aborted, Stopped, Pick phase,
Wait for posture, Follow foot, Wait to finish, Finish and Pointing. The tran-
sitions between the states are deterministic evoked by events such as a voice
command or a recognized posture. The voice commands are interpreted by
their semantic meaning tags as described in Section 3.2.1, shown in Table
3.2. These tags are the actual data that the FSM receives from the speech
recognition, and it is used from now. On the other hand the posture recog-
nition of the extended foot explained in Section 3.13 is binary, which means
that it is either recognized or not.
A description of each FSM state is given below.
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Figure 3.20: Implemented FSM of the dressing assistance

e Aborted: Initially, the autonomous robotic system is in the aborted
state. In this state only the ”start” and ”pointing” commands can
perform a transition. Meanwhile, the robot does not perform any
task, being stopped in its home position. The aborted state is also
thought as a prevention in case something goes wrong: although it is
not indicated in Fig. 3.20, there is a transition from any state to the
aborted state, using the voice command ”abort”.

e Pointing: The pointing state makes a transition from aborted with
the command ”pointing”. In this state the calibration algorithm of the
pointing recognition, described in Section 3.2.8 part A, is performed.
The robot requests the user: ”point out to the blue shoe and say take
this shoe” with the speech-synthesis algorithm explained in Section
3.2.2. The user must point to the blue shoe and say “take this shoe”,
repeating the same proceed for the red, green and yellow shoes. Once
the calibration is completed the FSM returns to the aborted state,
storing the pointing calibration of the user for future assistance.

e Stopped When the ”start” command is recognized during the aborted
state, a transition to stopped state is made. The robot lets know the
user that it is ready to perform the assistance with the message “ready
to help”. If the robot has not picked any shoe, therefore the only state
available is the pick phase. The user is able to choose between the
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different shoes by saying one of the five following commands: ”take”,
"blue”, “red”, "green” and “yellow”. If the user uses "take”, then
the system computes the closest shoe from the pointing gesture as
explained in Section 3.2.5. Any other voice command of these five
request the shoe with the related color, e.g. ”blue” for the blue shoe.
When the robot has picked a shoe, two more states are available from
the stopped state: wait for posture and follow foot. For both states
the voice command “dress” has to be said, but the recognition of the
extended foot posture decides whether going to one state or to the
other.

e Pick phase: Any of the five commands "take”, "blue”, "red”, ”green”
and "yellow” sets the state of the FSM to pick phase from the stopped
state. In this state the system tries to recognize the requested shoe us-
ing the object-color-segmentation algorithm described in Section 3.2.4.
Once the location of the color marker is found, the robot gives the feed-
back “taking the ” #color shoe” and moves to the requested shoe’s
position through the 3 waypoints defined in Section 3.2.7. When the
gripper grasps the shoe, the robot returns to its home position through
the 3 waypoints. Then the object color-segmentation algorithm tries
to recognize the same color again to ensure that the shoe was actually
taken: if the color is recognized, then the shoe was not picked up;
otherwise the system stores the previous location of the shoe and con-
siders that it was picked up. Finally the FSM returns to the stopped
state again, informing the user that the shoe was picked successfully
with the message 7the #color shoe is picked”.

While the robot is in the pick phase the user is able to correct the
robot if a wrong shoe is being picked up, just saying one of the five
previous commands. In that case the robot re-instantiates the pick
phase with the new requested shoe. This feature is represented as a
self transition in the pick phase.

As described in Section 3.2.7, if the user requests a new shoe and a
shoe is already taken, the robot places the grabsped shoe to its previous
stored location. Once the shoe is placed, the robot starts the picking
process for the new shoe.

e Wait for posture: If the user says "dress me” during the stopped
state and the extended foot posture is not recognized, the state of
the FSM is set to wait for posture, followed by the feedback ”please,
approach your foot”. As its name indicates, this state is meant to wait
until the user extends the foot towards the robot. When the posture
is recognized, the state changes to the follow foot state.

e Follow foot: Once the extended foot posture is recognized, either
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during the stopped or the wait for posture states, the current state is
set to follow foot. The robot approaches the user’s foot, as explained
in Section 3.2.7, with the message “approaching the foot”. Then the
FSM remains in this state to allow the user-guided. The adjustment
of the robot position, described in Section 3.2.8 part B, by using the

voice commands ”back”, ”forward”, "up” and “down”. Every time one
of these commands are recognized, the robot gives the corresponding
feedback:

— "moving away” for the command ”back”
— "approaching more” for the command ”forward”
— "moving up” for the command "up”

— "moving down” for the command ”“down”

The WAM robot follows the foot until either the user withdraws his or
her foot or the voice command ”stop” is recognized. If the user with-
draws the foot, the extended foot posture is not recognized, coming
back to the stopped state while the robot returns to its home position
with the feedback "you moved away your foot”. If this happens, the
user is able to use the command ”dress” to set the follow foot state
again.

e Wait to finish: If the command ”stop” is recognized, the FSM state
is set to wait to finish. At this moment, the robot stops following the
foot and stops in the current position providing the message ”stopped,
waiting for the user to finish the task”. This state is created to wait
until the user puts the foot inside the shoe. The command ”0k” makes
a transition to the last finish state. However, the user might not be
satisfied with the adjustment of the robot position from the foot. The
voice commands “back”, “forward”, "up” and “down” can be used
again to return to the follow foot state.

e Finish: Once the user introduces the foot inside the shoe and the voice
command ”ok” is recognized, the finish state is set in the FSM. The
gripper opens to release the shoe, and the robot returns to its home
position, while providing the feedback "the task is finished, thank you”.
When the robot reaches the home position, the state is again set to
abort, allowing the robot to be ready for a new dressing task.

3.3 Integration in ROS

The current project was implemented using the Robot Operating System
(ROS). ROS is a widely-used platform that provides libraries and tools for
development of robot applications. It has become a standard development
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platform in the robotics academic community, and rapidly adopted by the
representatives from industry. The major benefit from using ROS is the
easy integration and data transfer between different components of a sys-
tem, which are structured in so-called ROS nodes. ROS is licensed under
an open source BSD license?, providing hardware abstraction, visualizers,
message-passing and package management, among others capabilities. Sev-
eral distributions were developed for Linux operating system. In this work,
ROS Hydro® was installed in both Ubuntu PC

Data from the Kinect 1 is obtained using the OpenNI library®, and
open-source SDK used for development of applications based on RGB and
depth images. The integration with ROS is done using the Openni_kinect 7,
an open-source library used for the integration of PrimeSense sensors with
robotic systems, which are used for the recognition and localization of the
shoes in the assisted-dressing scenario.

The Kinect sensor 2 can be integrated with ROS using the newer OpenNI2
framework®. However, at the time of this project, user-tracking was not pro-
vided. For this reason, Kinect for Windows SDK 2.0, running on Windows
operating system was used. The application providing the user skeleton
tracking was written in C4++ using Visual Studio 12 IDE. The integration
with ROS was enabled using the rosserial_windows package®, which allowed
sending the Kinect 2 data from a Windows-based PC to a PC running on
Linux through a communication socket. A ROS node running on Linux-
based PC received the data from the socket and published them to the ROS
framework for other nodes to use them.

The WAM robot and the gripper drivers were compatible with ROS,
which allowed their easy integration and customization. ROS offers an easy
integration of both software and hardware, but also the multi-threading
capability required in robotic applications, where different threads are used
to wait for different events to occur.

The implemented algorithms distributed along different ROS nodes are
represented in Fig. 3.21. The red color indicates the implementation of the
node in the Windows-based PC, and the blue color in the Linux-based PCs.

The different ROS nodes are described bellow, while detailed ROS spec-
ifications and developed code can be found in Appendix A.

e Kinect 2 data socket: On the Windows-based PC, a data socket
that was developed provides the communication between the Kinect 2
and ROS framework. Both speech-recognition (Section 3.2.1) and user-

“ROS: http:/ /wiki.ros.org/

"ROS Hydro: http://wiki.ros.org/hydro

50penNT: http://openni.ru/index.html

"Openni_kinect package: http://wiki.ros.org/openni_kinect
80penNI2: http://structure.io/openni

“Rosserial package: http://wiki.ros.org/rosserial_windows
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Figure 3.21: Diagram about the integration of the algorithms in ROS. Red color indicates the
implementation in Windows, blue in Ubuntu.

tracking (Section 3.2.3) algorithms were integrated using this socket,
providing the user’s joints and the semantic meaning tags from speech.

¢ Rosserial Windows node: From one of the Linux-based PC, the
Rosserial Windows node published the data coming from the Kinect
2 data socket.

e Kinect 1 data openNI launch: The Kinect 1 data openNI launch
provided the RGB images and point clouds coming from the Kinect 1.

e Recognize shoe color node: The Recognize shoe color node used
the RGB images and point clouds from the Kinect 1 to execute the
object-color-segmentation algorithm, described in Section 3.2.4. When-
ever it was requested, the node executed this algorithm and published
the positions of the recognized color markers in ROS.

38



¢ Recognize foot posture node: The user’s joints are required for the
Recognize foot posture node, which executes the posture recognition
described in Section 3.13. A boolean is published in the ROS frame-
work, meaning by true that the extended right foot is recognized, and
by false the inverse.

e Dressing shoe demo node: This is the main node, which inte-
grated the pointing-recognition, decision-module, position-adjustment
and robot-motion-planning algorithms. It required the color markers
positions, the recognized voice commands and the user’s joints to ex-
ecute the four integrated algorithms. As output, this node publishes
the position of the WAM robot, the state of the gripper and feedback
messages.

e Inverse kinematics WAM node: The inverse kinematics WAM
node had integrated the inverse kinematics algorithm of the WAM
robot. The published WAM robot position is converted to the robot’s
joints poses.

e State gripper node: The state gripper node was responsible for
opening and closing the gripper.

e Text to speech node: The feedback of the robot was sent as a
text string in order to be converted to speech by the speech-synthesis
algorithm described in Section 3.2.2.

The real-time visualization of the dressing task in ROS was produced
in Rviz'", as shown in Fig. 3.22, with representations of the WAM robot,
platform with shoes, and the user’s joints. Everything integrated in the ROS
framework was referred to the WAM robot reference system, described in
Section 4.1

YRviz: http://wiki.ros.org/rviz
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Chapter 4

Experiments

The implemented autonomous robotic system for dressing assistance was
tested in a serie of experiments with users with no previous experience in
robotics. The experiments were designed to evaluate performance and user
workload under different conditions. The following sections describe the
experimental setup, tasks, user profiles and evaluation metrics.

4.1 Experimental setup

The proposed experimental setup consisted of one WAM robot, Kinect 1,
Kinect 2, and a platform holding four different shoes, two rights (blue and
green) and two lefts (red and yellow). An illustration of the scenario is
shown in Fig. 4.1

The WAM robot performed the dressing task. All the following mea-
surements are given in the WAM robot reference system. This origin was
parallel to the floor situated at 0.45m upper, and in the center of the WAM
robot’s base. The Kinect 1 was placed on the top and it was used for the
recognition of the shoes. Its location from the robot reference system was
(z,y,2) = (0.38m,—0.07m, 1.16m), and its orientation given by its Euler
angles was (o, 3,7) = (—139°,80°, —37°). The Kinect 2 was used to rec-
ognize speech, and track the user movements. Its position was in front
of the user was chosen to avoid the occlusion by the WAM robot when
dressing the shoe. The position in the robot reference system was set to
(z,y,z) = (2.03m, —0.57m,0.53m) and its orientation in the Euler angles
was (a, 3,7) = (0°,0°,121°).

The process of calibrating the cameras with respect to the robot’s posi-
tion was very important for the success of the dressing task. It was made
manually, measuring the distances to each axis in the WAM robot reference
system and with the visualization of the scenario in the ROS framework
using rviz.

In front of the robot there was a small platform from where the robot
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Figure 4.1: Dressing scenario

was able to pick up the shoes. The platform was parallel to the floor, placed
at —0.33m from the origin in the z direction. This platform is the so-called
shoe plane in Section 3.2.5. The shoes in the scenario were crocs shoes with a
attached ribbon in which different colored markers were placed: yellow, red,
blue and green. The shoes were placed inside the WAM workspace, being
equally distant one with another. The blue shoe was the closest to the
WAM robot at a distance of 0.3m, and the yellow shoe was the furthest at a
distance of 0.85m, both distances measured from the WAM robot reference
system.

The user was seated on one side of the WAM robot and in front of the
Kinect 2. The distance of the user from the robot was flexible however, two
constraints were considered: the user was located inside the visual field of
the Kinect 2 to allow the motion tracking, and the extended foot of the user
had to be at a distance between 0.50m and 0.70m from the WAM robot
base. In this way the extended foot was inside the workspace of the robot.
The user’s chair was a wheeled platform, allowing the user to adjust the
distance from the robot.

The dressing task performed by the robot was performed in several steps:

e (i) The user selected a one of the available shoes, either by pointing
the target shoe with the right arm saying “take this shoe” or using
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only speech, for instance "take the green shoe”.

(ii) The user was able to correct the robot in order to take other shoe
following the same procedure as described in (i).

(iii) The dressing part started when the user said ”dress me”.

(iv) The robot waited until the user extended the right foot. Then
the robot holding the shoe approached the user’s foot at a distance of
0.50m in the z axis and 0.40m in the xy plane, taking into account
the foot’s orientation.

(v) The robot followed the user’s foot. Now the user could adjust the
position of the WAM robot saying "move up”, "move down”, "move
forward” and "move back”.

e (vi) When a comfortable position was found, the user said ”stop” in
order to stop the robot in the current position.

e (vii) The task was finished when the user put the foot inside the crocs
shoe and said "that’s ok”.

4.2 User tests

The robot was evaluated in experiments with real users. The autonomous
robotic system was designed to dress only the right foot. In order to simulate
the dressing process of putting on both shoes, each trial performed with
participants consisted in dressing two right shoes such that the complexity
of the task was similar to dressing both shoes.

Since two different modalities were implemented to select a shoe, speech
and pointing, two experiments were defined, one for each modality.

e Experiment 1: The experiment 1 was designed to evaluate the use
of speech modality when choosing a shoe. The participant started the
trial by saying “begin”, and selected the blue shoe with the command
“take the blue shoe”. If the robot recognized a wrong command, taking
any other shoe, the user corrected the robot by repeating the same
command until the blue shoe was picked up. Then the participant
said “dress me”, extending the right foot towards the robot to be
assisted. When the extended foot posture was recognized, the robot
approached to the user’s foot, following it until the command ”stop”
was recognized. Finally the robot waited for the participant to put
the foot inside the shoe. Finally the user said ”that’s ok”. The robot
leaved the crocs shoe and came back to its home position. The same
task was repeated with the green shoe by saying “take the green shoe”.
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e Experiment 2: This experiment was designed to evaluate the use
of pointing modality when choosing a shoe. In the experiment 2, the
participant started the trial saying ”begin”, but now the selection of the
shoe was made through the pointing gesture. The user had to point the
blue shoe, and then say “take this shoe”. If the robot made a mistake
picking up any other shoe, the user had to insist on taking the blue
shoe using pointing again. Then, the participant had to say ”dress
me” and extend the foot. The robot approached and followed the
foot until the user said ”stop”. The dressing assistance was completed
when the user put the right foot into the crocs shoe and said "that’s
ok”. The same task was repeated for the green shoe using pointing.

In addition, two groups of users were created to evaluate the user adap-
tation:

e Group 1: The group 1 was created to evaluate the autonomous
robotic system without user adaptation. This group consisted of 6
people. The order of the experiments was changed in subgroups of 3
for counter-balancing, in order to reduce the learning effect.

e Group 2: The group 2 was created to evaluate the user adaptation,
which included the pointing calibration and the robot position adjust-
ment. The group consisted of 6 people, with the same procedure used
as before: 3 participants performed the experiment 1 first followed by
the experiment 2 and the other 3 in the inverse order.

Before performing the experiments, each participant in this group had
to calibrate the pointing recognition by saying “fit pointing”. The sys-
tem requested the user to point the blue shoe and say "take this shoe”,
and the same for the red, green and yellow shoes. The calibration fin-
ished after pointing the four shoes and was taken into account in the
experiment 2.

In addition, the robot position was adjusted. Each participant had
to say “begin” and select the blue shoe with the command “take the
blue shoe”. Then the user said ”"dress me” and extended the right
foot for the assistance. In that moment the robot approached the foot
to a prudent distant. The participant adjusted this distance using
the voice commands "move up”, "move down”, "move forward” and
"move back”. When one of these commands was recognized, the robot
continuously moved in the selected direction until the user said ”stop”,
stopping the WAM robot in the current position. If this position was
not still comfortable for the user, the last four commands were used
again to re-adjust the distance. Once the position was comfortable,
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Figure 4.2: Representation of the distributed tasks and experiments for the two groups of partic-
ipants. The group 1, with no adaptation, performed the experiment 1 and 2. The group 2, with
adaptation, first calibrated the pointing recognition and adjusted the robot position. Then the
experiment 1 and 2 were performed.

the participant finished the adjustment saying ”that’s ok”. This ad-
justment was stored and used both experiments for each participant.

The distributed tasks and experiments for each group of participants are
summarized in Fig. 4.2

A total of 12 participants were requested to perform 5 trials of each
experiment. They were equally distributed between the two groups, each
group containing 2 female and 4 male adults of age between 22 and 29. All
participants had a university degree (6 engineers, 3 computer scientist, 2
chemist and 1 biologist) and no previous experience in robotics.

The procedure of each experiment with the participants consisted of five
steps:

e 1) The given experiment was explained to each user using written
instructions. In this way all the participant received the same infor-
mation and hence the same conditions.

e 2) I performed a demo showing how the assisted robot works.

e 3) The participant was invited to try the system for a few minutes
before doing the first experiment. The distance between the user and
the robot was adjusted such that the extended foot was within the
workspace of the WAM robot.

e 4) The user performed 5 trials for the determined experiment, where
each trial consisted on putting on the blue and the green shoe.

e 5) The participant filled in a NASA-TLX questionnaire for each ex-
periment.
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All the participants in this work were assured that the robot was in
the compliant mode, making any contact with the robot safe during the
experiments. I was present during the experiments to monitor the correct
functionality of the robot, without interfering on providing any feedback to
the participant.

4.3 Evaluation metrics

The following metrics were used to measure the performance of the au-
tonomous robotic system and the workload of the participants. These met-
rics are divided into quantitative and qualitative:

¢ Quantitative metrics

— Completion Time: The completion time was the total time
used by the participant to be assisted in dressing two shoes. A
timer started when the voice command ”begin” was recognized
and stopped with the command ”that’s ok”. Since there were two
separated tasks per trial (one for the blue shoe and other for the
green shoe), two different times were obtained. The sum of these
two resulted in the total completion time, which was the used
metric for the experiments. Lower competition times indicated
better performance.

— Success: The success indicated the number of successfully de-
livered shoes. A perfect performance was when both shoes were
successfully put on the user’s foot.

— Number of Corrections: This was the number of times that
the user had to correct the robot in order to pick the desired
shoe. If the number of corrections is zero, the robot correctly
picked up the chosen shoe in the first attempt. Since there were
two dressing task per trial, the total number of corrections was
the sum of the corrections from both tasks. This metric was used
to evaluate the performance of the pointing algorithm.

— User angle 6" and corrected angle 6°: These two angles were
computed from the calibration performed by the group 2. The
computation of these angles was described in Section 3.2.8 part
A.

— Position of the robot: The position of the robot adjusted by
users in group 2 refers to the distance of the robot respect to
the foot during the dressing task. This metric was also used to
compute the average position, i.e. the most comfortable position
chosen by the users.

e Quantitative metrics
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— Raw NASA-TLX Questionnaire: Participants were asked to
complete a computerized version of the questionnaire for each
experiment. The raw NASA-TLX enables the collection of six
dimensions of workload: mental demand, physical demand, tem-
poral demand, performance, effort and frustration, all of them
ranging from 0 to 100 [72]. This questionnaire was used to assess
the participant workload when interacting with the robot for each
experiment, similarly as in [73, 69, 13].
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Chapter 5

Results and Discussion

In this chapter, the quantitative and qualitative analysis of the results from
the experiments is presented. The qualitative analysis was concerned with
the metrics that evaluated the accuracy of the system and the overall task
performance. The qualitative analysis provided the insight into the user
workload, which was evaluated using the NASA-TLX questionnaire.

5.1 Quantitative analysis

The results obtained with the quantitative metrics are described for each
experiment and each group of users. The experiments were designed to
evaluate the two different modalities when selecting a shoe: speech and
pointing. The two groups of participants were used to evaluate the user
adaptation algorithms. The group 1 performed without any adaptation and
the group 2 performed with adaptation.

The total success rate did not show any difference between the user
groups. For a total of 120 trials performed by 12 participants, the 97.7%
were successfully accomplished. Cases of failure appeared when the shoe fell
down to the floor after the user said the command that’s ok, without placing
the foot into the shoe properly.

The average and standard deviation of the completion time is shown
in Fig. 5.1. The completion time was approximately the same using the
speech modality for both groups. However, in the pointing modality, this
time was in average 23.3% longer in group 1 than in group 2. In fact, for
the group 2 the completion time was similar using both modalities. Users
in group 1 performed the task 24.2% slower with the pointing respect to
speech, indicating that the pointing was less precise without calibration.

The average number of corrections and its standard deviation for each
modality and group is represented in Fig. 5.2. The corrections using speech
modality was again similar in both groups. This behaviour was expected
since both groups had the same conditions using speech. On the other
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Figure 5.1: Effect of the interaction modality and adaptation of the autonomous system on the
task completion time. Error bars represent the standard deviation of the mean.

hand, the corrections performed by group 1 with respect to the group 2 using
pointing was on average higher. The standard deviation is also high in group
2, which indicated that the way of pointing depended of each participant:
some pointed better than others. The pointing calibration allowed reduce
the number of corrections by 79.2% compared to the performance of the
group 1. In fact, the group 2 had similar number of corrections in both
modalities, meaning that with the calibration, the pointing modality was as
accurate as speech.

Both the corrected and user angles were measured for the group 2. The
average and the standard deviation of both angles is shown in Fig. 5.3.
Using the convention described in Fig. 3.17, both angles were negative from
the WAM robot reference system. In general, participants pointed with a
deviation to the left from the user point of view. No clear conclusions can
be extracted about this behaviour, but it could be caused because all users
pointed with the right arm.

The difference between the corrected and the user angles (§¢ — 6%) with
mean and standard deviation values is shown in Fig. 3.2.5. The assumption
for the pointing-calibration algorithm in Section 3.2.5 was to consider a
linear relationship between these two angles. A linear trend can be noted
for the difference of these two angles, although the standard deviations are
too high for only 6 participants.

Finally, the mean value of the initial and final position of the robot
with respect to the ankle is shown in Fig. 5.5. This measurement provides
the point from where the users encounter more comfortable the dressing
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Figure 5.4: Difference between the corrected and the user angle (¢ — 0") for each shoe. Error
bars represent the standard deviation of the mean
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Figure 5.5: Initial and final position of the gripper respect to the ankle. Error bars represent the
standard deviation of the mean

5.2 Qualitative analysis

The NASA-TLS questionnaires were used for a qualitative analysis of the
experiments. The averages and standard deviations of the six dimensions of
workload for each group and each modality are shown in Fig. 5.6.
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On average, the mental demand was higher in group 2 than in group
1 using both modalities. This might be caused by the calibration and ad-
justment procedure performed by participants in group 2. Indeed, these
users performed a more complex test with the robot taking into account the
adaptation tasks.

The physical demand was approximately the same in both groups using
speech. Although a lower physical demand was expected for group 2, which
adjusted the robot position, the physical effort was rated very low in both
groups. Therefore the difference between the two groups in the physical
demand might not be appreciated using in this scale. Regarding the pointing
modality, the physical demand in group 2 remained at the same level as for
speech, but it increased 5.0% in group 1. Since the number of corrections
in group 2 was higher, it is expected that a larger number of corrections
implied more physical effort.

The temporal demand was evaluated lower in group 2 for both modal-
ities. The user adaptation made participants in group 2 to evaluate the
temporal demand 5.0% lower using speech and 8.3% lower using pointing
than group 1. This result is compatible with the completion time measure-
ment.

The performance was also higher for the participants in group 1, mean-
ing that they performed worse the two experiments than the group 2. The
performance using speech decreased 19.1% in group 2 while in pointing de-
creased 8.3%

Regarding the total effort, the results were very similar for both groups,
but different between modalities. The effort was higher using the pointing
rather than speech in both groups. Group 1 experienced 10.8% higher effort
using pointing than speech. Indeed pointing was a combination of speech
and pointing gesture to form the so-called deictic expressions, therefore the
final effort of the pointing modality is presumed to be higher as the results
shows.

Finally, the frustration was similar for both groups using the speech.
From this result it is extracted that the adjustment of the robot position to
the foot was not a source of frustration. About the pointing modality, group
1 experienced 10.0% more frustration than group 2. This result is has the
same behaviour as the number of corrections, being both results compatible.
The participants in group 1 experienced more frustration when the pointing
calibration was not performed.

The overall workload was the average of the 6 dimensions, and it is
represented in Fig. 5.7. Group 2 experienced less overall workload in both
modalities: 3.2% for speech and 5.4% for pointing. On the other hand,
group 1 rated 5.8% higher the workload using pointing rather than speech.
Group 1 only rated 3.6% higher the pointing modality.
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Chapter 6

Conclusions

Development of a robot assistant with activities of daily living is expected to
prolong independent living and improve life quality of patients with reduced
mobility. The work presented in this dissertation is an attempt to move a
step toward this ambitious goal. Contributions were made on several levels
of robotic system development including algorithm development, system in-
tegration and evaluation with users. The final system was able to assist the
users with a dressing task using speech and motion recognition, which was
the main goal of this work.

The main result of the project is a multi-modal human-robot interaction
framework that combines modalities such as voice command, gesture and
body posture, which are based on speech and motion recognition. The po-
tential of the proposed framework is not limited to development of speech
and motion recognition interfaces; its strongest feature is that it can com-
bine both speech and motion to produce so-called deictic expressions. For
example, in case of ambiguity, where there are several similar shoes to choose
from, the user may select a shoe by saying “take that shoe” while pointing
in the direction of the desired shoe. The experimental results showed that
this modality is less precise and requires more effort from the users than
using the voice commands only (task was performed 24.2% slower requiring
10.8% more effort). However, it is more powerful when spoken words are
not descriptive enough.

The seated position of the user in the proposed shoe-dressing scenario
poses additional challenge for user tracking. Development of algorithms for
user foot tracking and robot motion planning, as well as pointing recognition,
and posture recognition, required exhaustive system testing to achieve a
robust task performance. The system integration required a development of
a finite state machine that will be able to handle all steps of the dressing task
and unexpected events such as withdrawal of the foot or illogical requests
from the user, such as asking for a non-existent shoe.

The adaptation will be of utmost importance for user acceptance of as-
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sistive robots in the future. For the robot assistant in dressing, the ability to
adapt to user preferences was achieved through development of algorithms
for pointing calibration and robot position adjustment. Experimental re-
sults show that after applying the pointing calibration the number of point-
ing corrections was reduced by 79.2%. Also, the users that performed the
adaptation accomplished the dressing task 23.3% faster and experienced less
physical demand (5.0%) and frustration (10%) than the users who did not
perform the adaptation. Although the analysis of results included various
metrics for quantitative and qualitative system evaluation, one of the fu-
ture tasks will be the to evaluate their statistical significance, for example a
two-way repeated measure ANOVA test.

All the developments and evaluation were performed in the laboratory
setting. Future work may include the extension of the current task to dress-
ing of both feet. As a part of future work, the proposed HRI framework
could be adapted for other applications by redefining the task segments as
well as modifying the application-specific vocabularies for speech, gestures
and poses. The implementation of the developed algorithms on a commer-
cial robot platform is another long-term objective. The robot assistants in
the future will be required to help their users with a variety of tasks, as
well as serve as social companions. The ability to assist with dressing will
represent a useful addition to the set of robot skills.
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Appendix A

ROS framework and code

In this appendix, a detailed explanation about the ROS nodes with the
implemented algorithms is provided. Following sections assumed that the
reader has knowledge about the main concepts used in ROS, such as topic,
message type, publisher, subscriber, service, etc. Detailed information about
these concepts can be found in ROS tutorials!.

A.1 ROS nodes

The description about each ROS node used in this work is provided in each
of the following sections. The source code is available in a git repository,
also provided.

A.1.1 Kinect 2 data socket

The Kinect 2 data socket was used in order to send data from the Windows
machine to the ROS framework. It was developed under Windows 8.1 pro-
fessional with Visual Studio 2013 professional in C++-. This socket requires
to connect the Kinect 2 to the Windows machine using a usb 3.0 connection.
The socket consists in two different programs running simultaneously: the
speech-recognition and the user body tracking programs.

For these programs to run properly, the local IP address of the Ubuntu
machine where roscore is placed has to be specified. More detailed informa-
tion about the communication between Windows and Ubuntu using ROS
can be found in the rosserial_windows package.

Speech-recognition program

The speech-recognition program uses the speech-recognition algorithm, de-
scribed in Section 3.2.1, to send the voice commands through ROS. It in-

'ROS tutorials: http://wiki.ros.org/ROS/Tutorials

65



tegrates the Microsoft Speech Platform SDK 11, the Kinect for Windows
SDK 2.0 and ROS libraries for Windows generated by the rosserial_windows
package. The audio stream comes from the microphone array of the Kinect
2. The output of this program is:

e A publisher of the topic ”/commands” with the message type
iri_dressing_shoe_demo/speech_commands. This is a custom message
developed in the dressing_shoe_demo node, which is defined below.
The speech-recognition algorithm is listening all the time until a voice
command is recognized; then its semantic tag (defined in Table 3.2) is
sent with this message type through ROS using the rosserial_windows
node.

The iri_dressing_shoe_demo/speech_commands is compiled together with the
dressing_shoe_demo node, and it is generated by the rosserial_windows pack-
age for Windows. It has the following fields:

e string command: It contains the semantic tag of the recognized
voice command.

e float32 angle: It indicates the source angle of the sound measured in
the zy plane of the Kinect 2 reference system, but this information is
not used in this work.

e float32 confidence: This is the confidence of the recognized com-
mand. It is ranged within the interval [0, 1], although it must be
higher than the threshold 0.3 defined for the recognition. The confi-
dence value is not used in this work once the recognition is performed.

The source code of this program can be found in the following repository.
https://gitlab.iri.upc.edu/anflores/speechRecognition.git

User body tracking program

The user-body-tracking program contains the user-tracking-and-following
algorithm described in Section 3.2.3. It integrates the Kinect for Windows
SDK 2.0 and ROS libraries for Windows generated by the rosserial_windows
package. The user tracking and following algorithm uses the depth infor-
mation provided by the Kinect 2 to recognize the user’s joints in real time.
The output of this program is:

e The transforms of the joints, with their location and orientation, from
the Kinect 2 reference system (shown in Fig. 3.7). Transformations
are sent using the tf package, see the following documentation for fur-
ther information:

wiki.ros.org/tf
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The source code of this program can be found in the following repository:
https://gitlab.iri.upc.edu/anflores /body _joints_ros.git

A.1.2 Rosserial windows package

This package not only provides the rosserial_windows node for the commu-
nication with the Windows machine, but also the tools to generate the ROS
libraries for Windows. These libraries were generated from Ubuntu and im-
ported into the Kinect 2 data socket.

The rosserial_windows node is executed in the Ubuntu machine to receive all
the data from the socket and publish it through ROS. Detailed information
can be found wikipage of the package.

http://wiki.ros.org/rosserial_windows

A.1.3 Recognize foot posture node

This node was developed under Ubuntu in C4++. It integrates the posture
recognition algorithm described in Section 3.13, which uses the user’s joints
provided by the rosserial_windows node. The output of this node is the
following:

e A publisher in the topic ”/dressing_poses” with the message type
iri_recognize_foot_posture/posture. This is a custom message in ROS
that was developed in order to indicate if a posture is recognized in
real time.

The message iri_recognize_foot_posture/posture has the following fields de-
fined:

e string posName: This is the name of the recognized posture. In this
project the extended foot is the only posture recognized, therefore the
only name defined is "extended_right_foot”.

e bool recognized: The boolean indicates if the posture is recognized
(true) or not (false).

e int32 userID: This number is the index of the user provided by the
user motion and tracking algorithm (Section 3.2.3). Since the algo-
rithm is able to recognize 6 different skeleton, the userID ranges from
0 to 5.

The source code of this node can be found in the following repository:

https://gitlab.iri.upc.edu/anflores/iri_recognize_foot_posture.git

67



A.1.4 Kinect 1 data openNI launch

This package provides all the data obtained from the Kinect 1 and pub-
lishes it in the ROS framework. More specifically, it launches files to open
an OpenNI device (Kinect 1) and load all nodelets to convert raw depth/RG-
B/IR streams to depth images, disparity images, and (registered) point
clouds.

The relevant outputs of this package for this work are:

e A publisher in the topic ”/iri-wam/camera/depth_registered/points”
with the message type sensor_msgs/PointCloud?2. The point clouds
are published through this topic. Detailed information about the mes-
sage type can be found in the following link:

http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html

e A publisher in the topic ”/iri_wam/camera/rgb/image_color” with the
message type sensor-msgs/Image, for the RGB images. Detailed doc-
umentation about this message type can be found in:

http://docs.ros.org/api/sensor_msgs/html/msg/Image.html

Information about this package can be found in its wikipage:

http://wiki.ros.org/openni_launch

A.1.5 Recognize shoe color node

The recognize shoe color node integrates the object color segmentation al-
gorithm in the ROS framework, described in Section 3.2.4.

The inputs of this node are:

e A subscriber to the topic ”/iri-wam/camera/depth_registered/points”
with the message sensor_msgs/PointCloud?2.

e A subscriber to the topic ”/iri_wam/camera/rgb/image_color” with
the message type sensor-msgs/Image

This information is required by recognize the shoes and locate them in
the space. On the other hand, the output of this node is the following;:

e A service defined in the topic ”/interest_points” with a message defined
as a structure in C4++. This structure contains the following fields:
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— int id_color: this indicates the index of the recognized color.
For the defined colors in Table 3.4, which are red, green, blue
and yellow, the indexes are 0, 1, 3 and 7 respectively.

— int U, V: these two numbers represent the position in pixels
(width, height) of the recognized color in the RGB image.

— float X, Y, Z: this represents the position in the space of the
recognized color from the Kinect 1 reference system, shown in
Fig. 3.11.

When a client request this node to recognize the available shoes, the service
send an array made of elements defined by the previous structure. Each
element in the array represent a different recognized color. The source code
of the recognize shoe color node is provided in the following repository:

https://gitlab.iri.upc.edu/anflores/iri_color_interesting_points_deformable.git

A.1.6 Dressing shoe demo node

The dressing shoe demo node integrates the decision making, pointing recog-
nition and robot motion planning algorithms, and it is the main node. It
performed all the dressing assistance.

The inputs of this node are:

e A subscriber to the ”/dressing_poses” topic with the custom message
iri_recognize_dress_pose/pose defined in Section A.1.3. The informa-
tion about the foot posture is received through this topic.

e A subscriber to the ”/commands” topic with the custom message
iri_dressing_shoe_node/speech_command which was defined in Section
A.1.1. The recognized voice commands are received through this topic.

On the other hand, the outputs of the node are the following;:

e A publisher in the topic ”/target_marker” with the message visual-
ization-msgs/Marker”. Spherical markers are published for the visu-
alization in rviz of the pointing recognition of the user. For further
information about this message type, see:

http://docs.ros.org/jade/api/visualization,, sgs/html/msg/Marker.html

A publisher in the topic ”/iri_wam/pose_st” with the message geometry_msgs/PoseStamped.
Through this topic, the position of the robot from the WAM robot reference

system is sent to the inverse kinematics WAM launch. For detailed infor-

mation about the message type, see its documentation:

http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
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e A publisher in the topic ”/gripper_state” with the message std_msgs/Bool.
In this topic, the state of the gripper is set by setting true to open it and
false to close it. For detailed information about the message type, see the
following documentation:

http://docs.ros.org/api/std_msgs/html/msg/Bool.html

e A publiser in the topic ”/text2speech” with the message std_-msgs/String.
Feedback from the autonomous robotic system is published as a text string
to be turned into speech by the text-to-speech node.

The source code of dressing shoe demo node is provided in the following
repository:

https://gitlab.iri.upc.edu/anflores/iri_dressing_shoe_demo.git

A.1.7 Inverse kinematics WAM launch

This package provides the inverse kinematics algorithm of the WAM robot
to compute the joints angles from a given point in the space. The input of
this package is:

e A subscriber to the ”/iri_wam/pose_st” topic with the message ge-
ometry_-msgs/PoseStamped. The message contains the position and
orientation for the robot, in the space from the WAM robot reference
system.

The package is developed under the license of the Institut de Robotica i
Informatica industrial (IRI). Its source code is uploaded in a private repos-
itory, therefore access is required to use this package

https://devel.iri.upc.edu/labrobotica/ros/iri-ros-pkg_hydro/metapackages/iri_wam/iri_wam_dmp_tracker/

A.1.8 Gripper state node

The gripper state node is used to open and close the gripper. The input of
this node is the following:

e A subscriber to the topic ”/gripper_state” with the message std_msgs/Bool.
In this topic, the state of the gripper is set by setting true to open it
and false to close it-

This node has no outputs. The source code of this node is provided in
the following repository:

https://gitlab.iri.upc.edu/anflores/iri_move_gripper.git
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A.1.9 Text-to-speech node

The text-to-speech node contains the speech-synthesis algorithm to play in
speakers the feedback of the robot. It has the following input:

e A subscriber to the topic ”/text2speech” with the message std_msgs/String.
The text string received via this topic is the feedback of the robot.

This is the only node developed using Python. The source code is pro-
vided in the following repository:

https://gitlab.iri.upc.edu/anflores/iri_text2speech.git

A.2 Calibration of the Kinect sensors

The calibration of the Kinect sensors was very important for the success
of the dressing task. This calibration was performed using an implemented
node called calibrate_camera_rviz which uses the visualization tool rviz. De-
tailed information about rviz can be found in the following link:

http://wiki.ros.org/rviz

This node uses an interactive marker that one can move with the mouse
to change the transform of both Kinect sensors with respect to the WAM
robot reference system. In this way, the values are not set manually, but
instead the position of both Kinect sensor was interactively changed. The
source code is provided in the following repository:

https://gitlab.iri.upc.edu/anflores/iri_calibrate_camera_rviz.git

A.3 Execution in ROS

The execution of the different nodes and packages is described in the follow-
ing instructions. These nodes must be launched from a Ubuntu PC:
First roscore must be launched in a terminal:

$ roscore

In other terminal, the WAM robot driver node is launched launched by
doing;:

$ roslaunch iri_wam_bringup iri_wam_bringup.launch
Opening a new terminal, the inverse kinematics node is executed as:

$ roslaunch iri_wam_dmp_tracker test.launch
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Another terminal is required to launch the rosserial_windows node to receive
the data from Windows:

$ rosrun rosserial_server socket_node
Open a new terminal and launch the node recognize shoe color:
$ roslaunch iri_color_interesting _points_deformable
iri_color_interesting_points_deformable_and _CAM _NewCalibration
.launch
On a new terminal execute the node to calibrate the Kinect 1:
$ rosrun iri_calibrate_camera_rviz calibrate_kinectl
And the same for the Kinect 2:
$ rosrun iri_calibrate_camera_rviz calibrate_kinect2
Finally run the dressing shoe demo node in a new terminal:
$ roslaunch iri_dressing_shoe_demo demo.launch

Finally, the Kinect 2 data socket must be executed from Windows in
order to receive all the Kinect 2 data.
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