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Abstract

This thesis explores the integration of fuzzy set theory and fuzzy logic into artificial intelligence

(AI) systems, with an emphasis on enhancing their interpretability. We present the mathematical

foundations of fuzzy set theory, and demonstrate its application to the design and implementation

of a fuzzy rule-based system for a prediction task. We provide a mathematical description of

fuzzy neural networks, an extension of classical neural networks that incorporates fuzzy logic

operators. We apply both a classical and a fuzzy neural network to a prediction task, in order

to compare their performance and investigate the advantages and limitations of the latter model.

The fuzzy neural network shows similar performance to the classical neural network, while showing

increased interpretability through the optimization of fuzzy logic rules. This reveals the potential

of fuzzy logic to improve the interpretability of AI systems without significantly compromising

their accuracy.

The thesis thereby investigates alternative approaches to the development of AI models, em-

phasizing the need for models that are both explainable and maintain high accuracy, a fundamental

goal of the field of Explainable AI (XAI). Further implications of this research and suggestions

for future work are also discussed. The thesis contributes to the growing discourse on the role of

explainability in AI, setting a precedent for future research in the field.
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1 Introduction

Fuzzy logic is an extension of classical logic that accommodates degrees of truth. Extending the binary

integer values 0 and 1 of classical (or Boolean) logic, fuzzy logic allows for the representation of truth

values in the range [0, 1] ⊂ R, where 1 represents “totally true”, 0 represents “totally false”, and (0, 1)

represents intermediate degrees of truth. It is based on the concept of fuzzy set, first introduced by L.

A. Zadeh in 1965 [1], who proposed fuzzy set theory as a mathematical way of handling uncertainty

and imprecision inherent in real-world data and decision-making processes. For instance, fuzzy logic

can model vague concepts such as “tall”, “young” or “rich”, which are often difficult to define without

ambiguity.

Fuzzy logic is inspired by human reasoning, which is often based on partial truths and degrees

of certainty. It is therefore well-suited for processing the complex and vague information often en-

countered in real-world applications, such as medical diagnosis [2–4], image processing [5–7], natural

language processing [8, 9], or forecasting of natural phenomena [10–13].

Fuzzy logic has been applied to a wide range of Artificial Intelligence (AI) systems. We now present

a brief historical background, covering the main applications of fuzzy logic in AI in the past decades.

We discuss some of the current challenges and limitations in the field of AI and how fuzzy logic can

contribute to addressing them, which will motivate the objectives and scope for the present work.

1.1 Applications of fuzzy logic in Artificial Intelligence: historical back-

ground and current challenges

The history of fuzzy logic and its applications is closely intertwined with the history of AI, with

fuzzy logic techniques being used in the development of AI systems to address challenges related

to uncertainty, imprecision and vagueness in data. Here we provide a brief overview of the main

applications of fuzzy logic in AI in the past few decades. We outline the parallel development of both

disciplines and explore their relationship1.

The early stages of AI as a field, dating back to the 1950s and 1960s, were characterized by the

development of rule-based AI systems which relied on the use of formal logic and symbolic manipu-

lation [17–19]. It was during this period that fuzzy sets were introduced by L. A. Zadeh in 1965 [1],

laying the foundations of fuzzy set theory. During this stage, the applications of fuzzy set theory in

AI were limited, primarily due to the fact that this paradigm was still in its infancy. [20] was one

of the first works that discussed the application of fuzzy logic in decision-making, which is a crucial

aspect of AI systems.

During the 1970s and 1980s, AI was characterized by the development of knowledge-based AI

systems and expert systems, which relied on the representation of domain-specific knowledge to make

decisions [21, 22]. During this period, the application of fuzzy logic in AI was developed extensively,

with fuzzy logic being used to represent and manipulate uncertain or imprecise knowledge [23, 24].

Fuzzy logic was applied in the development of control systems and expert systems in various domains,

including medical diagnosis [25, 26], emergency management in fields such as nuclear technology,

aviation or medicine [27], autonomous navigation [28], and control of robots and other industrial

processes [29].

During the second half of the 1980s and in the 1990s, the development of AI systems was charac-

terized by a rise in the use of neural networks2. These systems were inspired by the human brain and

relied on the use of statistical techniques to learn from data [30]. At this stage, fuzzy logic found new

applications, and was integrated with neural networks to give rise to fuzzy neural networks [31, 32].

1A more detailed overview of the history and development of AI can be found in [14, pp. 17-27]. [14] also provides
an in-depth coverage of the main trends and practices in the field of AI throughout its history. For a comprehensive
account of the development of AI from its origins to the early 1990s, consider [15]. For a historical account of fuzzy
logic, its mathematical treatment and its applications, the reader is referred to [16].

2An introduction to neural networks can be found in section 3.1 of this text.
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These hybrid systems combined the advantages of both paradigms: the flexibility and adaptability of

neural networks (with their ability to learn from data), and the ability of fuzzy logic to handle uncer-

tainty and imprecision in data, to encode prior knowledge, and to define interpretable if-then rules in

the inference process [33]. As neural networks began to be used successfully in different applications

in the 1990s, fuzzy neural networks were also applied in various domains. Some of these applications

include the design of control systems such as for vehicle or robot control [34, 35], and a variety of

regression and classification problems such as image classification and turbidity optimization [33, 36,

37].

In the last decades, from the 2000s to the present, probabilistic approaches have had a major

role in the design of AI systems, in contrast to the previous logic-based approaches [38, 39]. In the

last decade in particular, the use of neural networks and deep learning techniques has increasingly

dominated AI [38, 40]. These techniques have led to significant progress in various fields, including

natural language processing [41, 42], speech recognition [43], visual object recognition [44, 45], robotics

and autonomous systems [46, 47], drug discovery [48], and genomics and computational biology [49].

However, modern techniques in deep learning also pose certain challenges and limitations. We now

discuss some of the key current challenges, and how fuzzy logic can contribute to addressing them. We

include references that demonstrate the integration of fuzzy logic with AI systems to approach these

challenges, and the recent advances in the combination of fuzzy logic with deep learning techniques.

Current challenges and limitations of AI and deep learning techniques

First, deep learning models typically require large amounts of data to be trained, and can be sensitive

to small changes in the input data [40]. In many real-world applications, however, data is often

scarce, it can be noisy or incomplete, or it can change dynamically to reflect new information [38, 50].

Fuzzy logic can be used to address these challenges by incorporating prior knowledge into the training

process, and by using fuzzy sets to represent imprecise or vague data [32, 51].

Second, deep learning models often lack interpretability and transparency due to their complex

architectures and lack of human-understandable inference processes. This lack of interpretability can

be problematic in many domains such as medical diagnosis, autonomous driving, robotic assistance,

or financial decision-making, which are regulated and where safety plays an important role [52]. Fuzzy

logic can address this limitation by offering transparent and human-understandable inference processes

through the use of predefined fuzzy logic rules, or through the automatic generation of new fuzzy logic

rules [32, 53, 54]. This approach offers an increased interpretability of the decisions made by the AI

system, and has already been applied to fields such as personalised medicine and genetics [55].

Third, many of the most successful deep learning models are based on mathematical and computa-

tional methods which may not always align with human reasoning. For instance, the use of activation

functions to introduce non-linearity in neural networks may not directly replicate the mechanisms of

human thought processes [56, 57]. However, for reasons similar to the ones discussed above, sometimes

it may be desirable to incorporate techniques into AI systems that align more closely with human

reasoning. Fuzzy logic can be used to address this limitation by using fuzzy logic rules to incorpo-

rate human reasoning processes into the design of AI systems, or generate these rules and processes

automatically [32, 53, 54, 58].

Last, it is worth noting that fuzzy logic can be integrated into a wide range of modern AI techniques

and architectures. Many combinations have been explored in the literature3, resulting in significant

improvements in different aspects of AI systems, like accuracy, robustness, and interpretability. For

instance, fuzzy logic has been integrated with convolutional neural networks (CNNs) [60, 61], recurrent

neural networks (RNNs) [62, 63], Autoencoders (AEs) [64, 65], generative adversarial networks (GANs)

[66], reinforcement learning (RL) models [67–69], and genetic algorithms [70, 71].

3An in-depth review of hybrid models that integrate fuzzy systems with modern AI techniques, covering a wide
range of procedures and applications, can be found in [59].
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1.2 Explainable AI: background and motivation

As seen above, the lack of interpretability, transparency and alignment with human reasoning is one

of the main limitations of modern AI systems. This has become the main focus of a new field of

research known as Explainable AI (XAI).

The concept of explainability of AI systems involves the following main aspects [52, 72]:

(i) the ability to explain the decisions made by the system and the underlying phenomena which

led to these decisions, in a way that is understandable to humans (transparency),

(ii) preventing the model from perpetuating any bias present in the data or arising from the

training process (bias),

(iii) ensuring that the model takes fair decisions in the context of the application (fairness),

(iv) ensuring that the model is safe and reliable (safety).

In essence, all these aspects are related to the interpretability of the model, which is the extent to

which the model and the predictions made by the model are human-understandable [52]. One of the

most addressed discussions in the literature is in relation to how the interpretability of a model can

be measured [73]. In this work, we regard the interpretability of AI models as the extent to which the

operations and predictions they perform can be explained in terms of human-understandable rules.

The interpretability of AI systems often comes with a decrease in their accuracy in terms of

predictive power. Therefore, one of the aims of XAI is to develop AI systems that are both explainable

and maintain a high accuracy, comparable to that of previous less interpretable models4 [52]. In

addition, it has been criticized in the literature that even supposedly interpretable models can become

difficult to interpret when they are high-dimensional [75]. These considerations will be taken into

account in this work, by comparing the accuracy of AI models which integrate fuzzy logic to the

accuracy of previous less interpretable models, and by discussing how the dimensionality of the models

can affect both their performance and their interpretability.

1.3 Objectives, scope and structure of this study

The main goal of this work is to explore the incorporation of fuzzy set theory and fuzzy logic into AI

systems, and to investigate the potential benefits of such combination. In particular, we will focus

mainly on the use of fuzzy logic operators to develop interpretable and explainable AI systems.

To this end, our first objective is to provide an introduction to the mathematical foundations of

fuzzy set theory, with a particular focus on fuzzy set operations, which model the and, or and not

logical operators. We also seek to investigate the early uses of fuzzy set theory in AI, namely in the

development of rule-based systems, illustrating how fuzzy logic is used to encode prior knowledge

and to define interpretable if-then rules in the inference process. We demonstrate the design and

implementation of a fuzzy rule-based system for the prediction of crop yields. Section 2 is dedicated

to these objectives.

Our next objective is to explore the incorporation of fuzzy logic in one of the primary models in

modern AI: neural networks. We seek to investigate the use of fuzzy logic operators in the design of

interpretable neural networks. We will see how the resulting model, known as fuzzy neural network,

combines the flexibility and adaptability of classical neural networks (with their ability to learn from

data), with the improved interpretability and human-like reasoning which fuzzy logic can provide.

We demonstrate the design and implementation of both a classical and a fuzzy neural network

for the prediction of crop yields, and compare the different systems implemented for the same task.

Through this illustrative application, we will discuss different advantages and limitations of fuzzy

neural networks. The mathematical foundations and the implementation of these models will be

presented in section 3, and further discussion will be provided in section 4.

4For a survey of the main methods and techniques used in XAI, the reader is referred to [52, 74].
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2 Fuzzy set theory

The aim of this section is to provide an introduction to fuzzy set theory. We provide a formal

description of the main objects that fuzzy set theory addresses, fuzzy sets, and a survey of the main

fuzzy set operations.

We also present an early use case of fuzzy set theory in AI, namely in the development of fuzzy

rule-based systems. We demonstrate the design and implementation of a fuzzy rule-based system for

the prediction of crop yields.

We start by reviewing notions of classical set theory that will later be extended to fuzzy set theory.

2.1 From crisp sets to fuzzy sets: an overview

It is standard in the literature to refer to classical non-fuzzy sets as crisp sets, an expression first

introduced by L. A. Zadeh in 1965 [76]. The elements of a crisp set are referred to as crisp elements.

The notion of characteristic function will be particularly useful in our text:

Definition 1. Let X be a universal set5, and consider a crisp set A ⊆ X. The characteristic function

of A is the function χA : X → {0, 1} such that, for all x ∈ X,

χA(x) =

{
1 if x ∈ A,

0 if x /∈ A.

This function declares which items in X are elements of the set A, assigning crisp boolean values

{0, 1} to each item in X. There is therefore a one-to-one correspondence between crisp sets and their

characteristic functions:

Proposition 2. Let X be a universal set. For any two crisp sets A,B ⊆ X with characteristic

functions χA and χB, respectively, we have

A = B ⇐⇒ χA = χB.

The concept of characteristic function will be extended later to the notion of membership function,

which assigns a fuzzy value in the interval of real numbers [0, 1] to each element in X, that corresponds

to its degree of membership to a fuzzy set considered.

Let us now review the main operations performed on crisp sets.

Definition 3. Let X be a universal set, and A,B ⊆ X two crisp sets with characteristic functions χA

and χB, respectively. The intersection of A and B is defined as the set of items in X that are items

of both A and B:

A ∩B = {x ∈ X | χA(x) = 1 and χB(x) = 1 }.

The union of A and B is defined as the set of items in X that are items of either A or B:

A ∪B = {x ∈ X | χA(x) = 1 or χB(x) = 1 }.

And the complement of A is defined as the set of elements in X that are not elements of A:

Ac = {x ∈ X | χA(x) = 0 }.

Remark 4. The characteristic functions of the intersection, union and complement of crisp sets,

denoted as χA∩B, χA∪B and χAc , respectively, satisfy the following equalities for all x ∈ X:

5All universal sets considered in this work are crisp sets.
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(i) χA∩B(x) = χA(x) · χB(x),

(ii) χA∪B(x) = χA(x) + χB(x) − χA(x) · χB(x),

(iii) χAc(x) = 1 − χA(x). △

Proposition 5. Let X be a universal set, and A,B ⊆ X two crisp sets. Crisp set operations satisfy

the following equalities, known as De Morgan’s laws6:

(A ∩B)c = Ac ∪Bc,

(A ∪B)c = Ac ∩Bc.

Remark 6. Considering X the universal set, and A,B ⊆ X two crisp sets, De Morgan’s laws are

equivalent to the following equalities, in terms of the characteristic functions of the sets:

χA∩B(x) = 1 − χAc ∪Bc(x), (1)

χA∪B(x) = 1 − χAc ∩Bc(x), (2)

for all x ∈ X. △

There is a natural connection between classical sets and its operations, and classical logic state-

ments and operators [78, pp. 6, 7]. Given a universal set X and a logical statement P (x) defined

for all x ∈ X, P (x) determines a crisp set A ⊆ X that contains the elements a ∈ X such that P (a)

is true, i.e. A = {a ∈ X | P (a)}. For example, if X = Z and P (x) is the statement “x is an even

number”, then A is the set of all even numbers.

Then, for any x ∈ X, the truth value of P (x) is determined by the value of the characteristic

function of A at x, i.e. for any x ∈ X, P (x) is true if and only if χA(x) = 1. Furthermore, the operations

of intersection, union and complement of crisp sets correspond to the logical operators of conjunction

(∧), disjunction (∨) and negation (¬), respectively, in the following way: given two logical propositions

P (x) and Q(x) defined for every x ∈ X, and the corresponding crisp sets A = {a ∈ X | P (a)} and

B = {b ∈ X | Q(b)}, we have

A ∩B = {c ∈ X | P (c) ∧Q(c)},
A ∪B = {c ∈ X | P (c) ∨Q(c)},

Ac = {c ∈ X | ¬P (c)}.

The operations of intersection, union and complement of crisp sets will be extended to fuzzy sets

through operators known as t-norm, t-conorm and fuzzy complement. It will be seen that these

operators correspond to membership functions themselves, in the same way that crisp set operations

can be expressed in terms of characteristic functions. They assign a fuzzy value in [0, 1] to each element

in X, corresponding to the degree of membership of the element to the intersection, the union and the

complement of fuzzy sets, respectively. We will be interested in pairs of t-norms and t-conorms that

satisfy a generalization of De Morgan’s laws which will be presented later in the text. The relation

between these operators and logical operators will also be presented, with t-norms, t-conorms and

fuzzy complements corresponding to ∧, ∨ and ¬, respectively.

2.2 Fuzzy sets

The main objects of study of fuzzy set theory are fuzzy sets, first introduced in [1].

Definition 7. Given a crisp set X, a fuzzy set A in X is a set of ordered pairs

A = {(x, µA(x)) | x ∈ X},

where µA : X → [0, 1] ⊂ R is called membership function.

6For a proof of De Morgan’s laws in the context of set theory, see [77, pp. 6-7].
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The membership function assigns values to the elements of the universal set X that correspond to

their degree of membership to the set A considered.

Remark 8. If we have µA(x) ∈ {0, 1} for all x ∈ X, then the fuzzy set A is, in particular, a crisp set.

In this case, the membership function µA is the characteristic function of A (see Definition 1).

Therefore, fuzzy sets are a generalization of crisp sets, and the membership function of a fuzzy set

is a generalization of the characteristic function of a crisp set. △

Example 9 [79]. We define a fuzzy set that represents the medical concept of “high fever”, based on a

person’s temperature. According to [79], from the medical point of view, a person with a temperature

higher than 39.0 ◦C has a high fever with degree of certainty 1 (that is, they surely have a high fever).

A person whose temperature (in ◦C) is in the interval [38.5, 39.0] has a high fever with some degree of

certainty in [0, 1]. And a person with a temperature lower than 38.5 C◦ has a high fever with degree

of certainty 0 (that is, they surely do not have a high fever).

Consider the universal set X ⊂ R to be the set of all possible temperatures that a person can

have, in degrees Celsius (◦C). In this example, we will consider X = [34.0, 42.0]. We define the fuzzy

set HF , that represents “high fever”, as HF = {(x, µHF (x)) | x ∈ X}, where µHF : X → [0, 1] is the

membership function of HF , defined as follows:

µHF (x) =


0, if x < 38.5,
x−38.5

0.5 , if 38.5 ≤ x ≤ 39.0,

1, if x > 39.0.

See Figure 1 for a graphical representation of µHF . △

Example 10 [80, Example 3.1]. Let us now define a fuzzy set representing the development of a

country in terms of health, based on the life expectancy of its population. One approach to do so is to

define an upper goalpost and a lower goalpost for the life expectancy of the population, and define the

membership function of the fuzzy set in terms of these goalposts. With this approach, a country with

a life expectancy above the upper goalpost can be considered highly developed in terms of health, and

a country with a life expectancy below the lower goalpost can be considered highly underdeveloped

in terms of health.

Consider the universal set X ⊂ R to be the set of all possible life expectancies that a country can

have, in years. In this example, we will consider X = [0.0, 100.0].

We define the fuzzy set H, that represents “developed countries in terms of health”, as H =

{(x, µH(x)) | x ∈ X}, where µH : X → [0, 1] is defined as

µH(x) =
1

1 + e−a(x−b)
,

a logistic function with parameters a the slope of the function, and b the life expectancy corresponding

to the midpoint of the function (i.e. such that µH(b) = 0.5).

If we consider the upper goalpost to be 85 years, and the lower goalpost to be 25 years, then

setting a = 0.15 and b = 55 yields the membership function

µH(x) =
1

1 + e−0.15(x−55)
,

represented in Figure 2. △

Definition 11 [81, Def. 2-2]. Let A be a fuzzy set in a crisp set X, with membership function µA.

The support of A, denoted S(A), is the crisp set of elements that belong to A to some non-zero degree:

S(A) = {x ∈ X | µA(x) > 0}.
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Definition 12 [81, Def. 2-3]. Let A be a fuzzy set in a crisp set X, with membership function µA.

Given α ∈ [0, 1], the α-level set (or the α-cut) of A, denoted Aα, is the crisp set of elements that

belong to A at least to the degree α:

Aα = {x ∈ X | µA(x) ≥ α}.

Also, the set A′
α = {x ∈ X | µA(x) > α} is called the strong α-level set or strong α-cut of the fuzzy

set A.

Remark 13. Let A be a fuzzy set in a crisp set X. We observe that (i) A′
0 = S(A), (ii) A0 = X,

and (iii) A′
1 = ∅. △

Example 14. Consider the fuzzy set HF that represents the medical concept of “high fever”, defined

in Example 9. The support of HF is

S(HF ) = {x ∈ X | x > 38.5} = (38.5, 42.0] .

The α-level sets of HF are the following:

HF0 = X = [34.0, 42.0] ,

HFα = [0.5 · α + 38.5, 42.0] for α ∈ (0, 1]. △

Example 15. Consider the fuzzy set H that represents “developed countries in terms of health”,

defined in Example 10, with membership function µH(x) =
1

1 + e−0.15(x−55)
.

For α ∈ (0, 1), the strong α-level set of H is

H ′
α =

{
x ∈ X

∣∣∣ x > 55.0 +
1

0.15
· ln

(
α

1 − α

)}
=

(
55.0 +

1

0.15
· ln

(
α

1 − α

)
, 100.0

]
.

△

2.3 Operations on fuzzy sets

Many possible operators have been proposed to extend the operations on classical sets to operations

on fuzzy sets. To describe these specific operators, we first need to introduce the more general notion

of t-norm and t-conorm.

Definition 16 [51, p. 62]. A t-norm is a function t : [0, 1] × [0, 1] → [0, 1] that satisfies the following

properties:

(i) t is commutative: t(x, y) = t(y, x) for all x, y ∈ [0, 1].

(ii) t is associative: t(x, t(y, z)) = t(t(x, y), z) for all x, y, z ∈ [0, 1].

(iii) 1 is the identity element: t(x, 1) = t(1, x) = x for all x ∈ [0, 1].

(iv) t is monotonous: if y ≤ z, then t(x, y) ≤ t(x, z) for all x, y, z ∈ [0, 1].

Figure 1: Graphical representation of the
membership function µHF of the fuzzy set HF that

represents the medical concept of “high fever”.

Figure 2: Graphical representation of the membership
function µH of the fuzzy set H that represents a

“developed countries in terms of health”, based on the
life expectancy of its population.
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Definition 17 [51, p. 77]. A t-conorm (or s-norm) is a function s : [0, 1]× [0, 1] → [0, 1] that satisfies

the following properties:

(i) s is commutative: s(x, y) = s(y, x) for all x, y ∈ [0, 1].

(ii) s is associative: s(x, s(y, z)) = s(s(x, y), z) for all x, y, z ∈ [0, 1].

(iii) 0 is the identity element: s(x, 0) = s(0, x) = x for all x ∈ [0, 1].

(iv) s is monotonous: if y ≤ z, then s(x, y) ≤ s(x, z) for all x, y, z ∈ [0, 1].

Remark 18. Note that, due to commutativity, the property (iv) in Definition 16 is equivalent to the

fact that, for all x, y, z ∈ [0, 1], if x ≤ y, then t(x, z) ≤ t(y, z). The same holds analogously for the

property (iv) in Definition 17. △

Let us now introduce the main operations performed on fuzzy sets. We will see that these opera-

tions are a generalization of the operations defined on classical sets.

Definition 19. Let A and B be two fuzzy sets in a crisp set X, with membership functions µA and

µB, respectively. We define the intersection of A and B as the fuzzy set

A ∩B = {(x, µA∩B(x)) | x ∈ X}

with membership function

µA∩B(x) = t(µA(x), µB(x)) ∀x ∈ X,

where t is a t-norm.

We define the union of A and B as the fuzzy set

A ∪B = {(x, µA∪B(x)) | x ∈ X}

with membership function

µA∪B(x) = s(µA(x), µB(x)) ∀x ∈ X,

where s is an t-conorm.

And we define the complement of A as the fuzzy set

Ac = {(x, µAc(x)) | x ∈ X}

with membership function

µAc(x) = 1 − µA(x) ∀x ∈ X.

Remark 20. If the fuzzy sets A and B are crisp sets (i.e. if µA(x), µB(x) ∈ {0, 1} for all x ∈ X),

then the operations on fuzzy sets become the operations on classical sets (see Definition 3).

In effect, due to 1 being the identity element of t a t-norm, it holds that t(1, 1) = 1 and t(1, 0) =

t(0, 1) = 0; and due to the monotonicity of t, we have that t(0, 0) = 0. Therefore, the intersection of

A and B satisfies the definition of the intersection of classical sets when A and B are crisp sets.

Analogously, due to 0 being the identity element of s a t-conorm, it holds that s(0, 0) = 0 and

s(0, 1) = s(1, 0) = 1; and due to s being monotonous, we have that s(1, 1) = 1. Thus the union of A

and B satisfies the definition of the union of classical sets if A and B are crisp sets.

Finally, the complement of A satisfies the definition of the complement of classical sets when

A is a crisp set: µAc(x) = 1 − µA(x) = 1 − 1 = 0 if x belongs to A (that is, µA(x) = 1); and

µAc(x) = 1 − µA(x) = 1 − 0 = 1 if x does not belong to A (that is, µA(x) = 0).

Therefore, the operations on fuzzy sets are a generalization of the operations on classical sets. △

We have defined the operations on fuzzy sets in terms of t-norms and t-conorms. In order to perform

these operations, we need to choose specific operators (that is, specific functions that are t-norms or

t-conorms). We will be interested in pairs of t-norms and t-conorms that satisfy a generalization

8



of De Morgan’s laws for fuzzy sets, which corresponds to the notion of duality with respect to the

complement.

Definition 21 [51, p. 83]. Let t be a t-norm and s be an t-conorm. We say that t and s are dual with

respect to the complement if and only if, for any x, y ∈ [0, 1], they satisfy the following equalities:

t(x, y) = 1 − s(1 − x, 1 − y), and (3)

s(x, y) = 1 − t(1 − x, 1 − y). (4)

Remark 22. The equalities (3) and (4) are a generalization of De Morgan’s laws for fuzzy sets. In

effect, consider two fuzzy sets A and B in a universal set X, with membership functions µA and µB,

respectively. Let t and s be a t-norm and an t-conorm, respectively, that are dual with respect to the

complement. Then, by Definitions 19 and 21, we have that

µA∩B(x) = t(µA(x), µB(x)) = 1 − s(1 − µA(x), 1 − µB(x)) = 1 − s(µAc(x), µBc(x)) = 1 − µAc∪Bc(x),

and that

µA∪B(x) = s(µA(x), µB(x)) = 1 − t(1 − µA(x), 1 − µB(x)) = 1 − t(µAc(x), µBc(x)) = 1 − µAc∩Bc(x).

In the case of A and B being crisp sets, these equalities correspond to De Morgan’s laws for classical

sets (see the equalities (1) and (2) in Remark 6). Therefore, the notion of duality with respect to the

complement is a generalization of De Morgan’s laws for fuzzy sets. △

Notation 23. We will denote a pair of a t-norm t and an t-conorm s that are dual with respect to

the complement by ⟨t, s⟩. For simplicity, we will call such a pair a dual pair for the remainder of the

text.

Commonly used dual pairs of t-norms and t-conorms

Many specific dual pairs of t-norms and t-conorms have been proposed in the literature. We now

present some of the most commonly used ones [81, pp. 31, 32]. Throughout this subsection, consider

µA, µB : X → [0, 1] to be the membership functions of two fuzzy sets A,B, respectively, in a universal

set X.

The minimum t-norm and maximum t-conorm7 were proposed by L. A. Zadeh in 1965 [1]. They

are defined, respectively, as

tmin(µA(x), µB(y)) = min(µA(x), µB(y)), and

smax(µA(x), µB(y)) = max(µA(x), µB(y)) ∀x, y ∈ X.

In the following proposition, we prove that tmin and smax are a dual pair.

Proposition 24. The t-norm tmin and the t-conorm smax are dual with respect to the complement.

Proof. Let x, y ∈ X. Assume, without loss of generality, that µA(x) ≤ µB(y). Then it holds that

1 − µA(x) ≥ 1 − µB(y). We obtain that

1 − smax(1 − µA(x), 1 − µB(y)) = 1 − max(1 − µA(x), 1 − µB(y)) = 1 − (1 − µA(x)) = µA(x)

= min(µA(x), µB(y)) = tmin(µA(x), µB(y)), and

1 − tmin(1 − µA(x), 1 − µB(y)) = 1 − min(1 − µA(x), 1 − µB(y)) = 1 − (1 − µB(y)) = µB(y)

= max(µA(x), µB(y)) = smax(µA(x), µB(y)).

Therefore, ⟨tmin, smax⟩ is a dual pair.

7The minimum t-norm and maximum t-conorm are also commonly referred to as the Gödel t-norm and Gödel
t-conorm, respectively.
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The  Lukasiewicz t-norm and t-conorm are defined, respectively, as

t L(µA(x), µB(y)) = max(0, µA(x) + µB(y) − 1), and

s L(µA(x), µB(y)) = min(1, µA(x) + µB(y)) ∀x, y ∈ X.

In the following proposition, we show that t L and s L are a dual pair. The proof relies on the result

shown in Proposition 24.

Proposition 25. The t-norm t L and the t-conorm s L are dual with respect to the complement.

Proof. Let x, y ∈ X. Assume, without loss of generality, that µA(x) ≤ µB(y). Then it holds that

1 − µA(x) ≥ 1 − µB(y).

We obtain that

1 − s L(1 − µA(x), 1 − µB(y)) = 1 − min(1, (1 − µA(x)) + (1 − µB(y)))

= 1 − min(1, 1 − (µA(x) + µB(y) − 1))

= max(0, µA(x) + µB(y) − 1) = t L(µA(x), µB(y)), and

1 − t L(1 − µA(x), 1 − µB(y)) = 1 − max(0, (1 − µA(x)) + (1 − µB(y)) − 1)

= 1 − max(0, 1 − (µA(x) + µB(y)))

= min(1, µA(x) + µB(y)) = s L(µA(x), µB(y)),

where we have used that ⟨tmin, smax⟩ = ⟨min,max⟩ is a dual pair (Proposition 24) in the third equality

of each of the equations above. Therefore, ⟨t L, s L⟩ is a dual pair.

The last example of a dual pair of t-norm and t-conorm that we present is the product t-norm and

the sum t-conorm. They are defined, respectively, as

tπ(µA(x), µB(y)) = µA(x) · µB(y), and (5)

sπ(µA(x), µB(y)) = µA(x) + µB(y) − µA(x) · µB(y) ∀x, y ∈ X. (6)

In order to show that tπ and sπ are a dual pair, let us first present the following two results, which

are useful for finding the dual of any t-norm and any t-conorm.

Theorem 26 [51, Theorem 3.20]. Let t be a t-norm. Then s : [0, 1] × [0, 1] → [0, 1] defined by

s(x, y) = 1 − t(1 − x, 1 − y) ∀x, y ∈ [0, 1]

is a t-conorm such that ⟨t, s⟩ is a dual pair.

Proof. Let x, y ∈ [0, 1]. We start by proving that s is a t-conorm. We prove that properties (i)-(iv) in

Definition 17 hold for s.

(i) s is commutative:

s(x, y) = 1 − t(1 − x, 1 − y) = 1 − t(1 − y, 1 − x) = s(y, x),

where we have used that t is commutative in the second equality.

(ii) s is associative:

s(x, s(y, z)) = s(x, 1 − t(1 − y, 1 − z)) = 1 − t(1 − x, 1 − (1 − t(1 − y, 1 − z)))

= 1 − t(t(1 − x, 1 − y), 1 − z) = 1 − t(1 − s(x, y), 1 − z) = s(s(x, y), z),

where we have used the associativity of t in the third equality.
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(iii) 0 is the identity element of s:

s(x, 0) = 1 − t(1 − x, 1) = 1 − (1 − x) = x,

where we have used that 1 is the identity element of t in the second equality. Similarly, by the

commutativity of s, we have s(0, x) = x.

(iv) s is monotonous: if y ≤ z, then 1 − y ≥ 1 − z, and therefore

s(x, y) = 1 − t(1 − x, 1 − y) ≤ 1 − t(1 − x, 1 − z) = s(x, z),

where we use that t(1 − x, 1 − y) ≥ t(1 − x, 1 − z), since t is monotonous.

Therefore, s is a t-conorm. We now show that ⟨t, s⟩ is a dual pair. In effect,

1 − s(1 − x, 1 − y) = 1 − (1 − t(1 − (1 − x), 1 − (1 − y))) = t(x, y), and

1 − t(1 − x, 1 − y) = s(x, y), by definition.

Theorem 27 [51, Theorem 3.21]. Let s be a t-conorm. Then t : [0, 1] × [0, 1] → [0, 1] defined by

t(x, y) = 1 − s(1 − x, 1 − y) ∀x, y ∈ [0, 1]

is a t-norm such that ⟨t, s⟩ is a dual pair.

Proof. Analogous to the proof of Theorem 26.

We illustrate the usefulness of these results by showing that the product t-norm and sum t-conorm

are a dual pair. In effect, given tπ the product t-norm defined in (5), we have that, by Theorem 26,

the t-conorm sπ such that ⟨tπ, sπ⟩ is a dual pair is given by

sπ(µA(x), µB(y)) = 1 − tπ(1 − µA(x), 1 − µB(y)) = 1 − (1 − µA(x)) · (1 − µB(y))

= µA(x) + µB(y) − µA(x) · µB(y) ∀x, y ∈ X,

which corresponds to the sum t-conorm as defined in (6).

We include Table 1 as a reference of the commonly used dual pairs of t-norms and t-conorms

presented here, as they will be used in the following sections. The following example illustrates the

use of t-norms and t-conorms to perform operations on fuzzy sets.

Example 28. Consider the universal set X = [0, 100). We define the fuzzy set A in X that rep-

resents “numbers considerably larger than 10” and the fuzzy set B in X that represents “numbers

approximately 11”. The membership functions of A and B are defined, respectively, as

µA(x) =

0 if x ≤ 10
1

1 + (x− 10)−2
if 10 < x < 100

and µB(x) =
1

1 + (x− 11)4
∀x ∈ X.

We use the operators ⟨tmin, smax⟩ to perform the intersection and union of A and B. The mem-

Name t-norm t-conorm

mininum / maximum tmin(x, y) = min(x, y) smax(x, y) = max(x, y)

 Lukasiewicz t L(x, y) = max(0, x + y − 1) s L(x, y) = min(1, x + y)

product / sum tπ(x, y) = x · y sπ(x, y) = x + y − x · y

Table 1: Commonly used dual pairs of t-norms and t-conorms.
Here we consider x, y ∈ [0, 1].

Figure 3: Graphical representation µA∩B

and µA∪B defined in Example 28.
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bership function of the fuzzy set A ∩B is given by

µA∩B(x) =


0 if x ≤ 10

min

(
1

1 + (x− 10)−2
,

1

1 + (x− 11)4

)
if 10 < x < 100

=


0 if x ≤ 10

1

1 + (x− 10)−2
if 10 < x ≤ x0

1

1 + (x− 11)4
if x0 < x < 100

and the membership function of the fuzzy set A ∪B is given by

µA∪B(x) =


1

1 + (x− 11)4
if x ≤ 10

max

(
1

1 + (x− 10)−2
,

1

1 + (x− 11)4

)
if 10 < x < 100

=


1

1 + (x− 11)4
if 0 ≤ x ≤ x0

1

1 + (x− 10)−2
if x0 < x < 100,

where x0 is the point where the membership functions µA and µB intersect. Solving the equation

µA(x0) = µB(x0) numerically for x0 yields x0 ≈ 11.7549. See Figure 3 for a graphical representation

of µA∩B and µA∪B. △

Interpretation of fuzzy sets and their operations in fuzzy logic

Let X be a universal set. Recall, from section 2.1, that a classical logic proposition P (x), defined for

every x ∈ X, determines a crisp set A = {x ∈ X | P (x)}. This connection is extended to fuzzy logic

propositions and fuzzy sets: a fuzzy logic proposition8 P (x), defined for every x ∈ X, determines a

fuzzy set A = {(x, µA(x)) | x ∈ X} such that µA(x) is the degree of truth of P (x) ∀x ∈ X [51, p.

220].

Furthermore, the operations of intersection, union and complement of fuzzy sets are interpreted as

the logical operations of conjunction (∧), disjunction (∨) and negation (¬) of fuzzy logic propositions,

respectively [82]. For instance, if P (x) and Q(x) are two fuzzy logic propositions, defined for all x ∈ X,

with corresponding fuzzy sets A = {(x, µA(x)) | x ∈ X} and B = {(x, µB(x)) | x ∈ X}, respectively,

then the degree of truth of P (x)∧Q(x) is given by µA∩B(x). The same relationship holds analogously

for P (x) ∨Q(x) and µA∪B(x), and for ¬P (x) and µAc(x).

Example 29. Consider the universal set X = [0, 100). Let P (x) and Q(x) be the fuzzy logic propo-

sitions “x is considerably larger than 10” and “x is approximately 11”, respectively, defined for all

x ∈ X. These propositions correspond to the fuzzy sets A and B defined in Example 28. Consider

also µA∩B and µA∪B as defined in Example 28.

Let x = 11.4. The truth values of the propositions P (11.4) and Q(11.4) are given by µA(11.4) ≈
0.6622 and µB(11.4) ≈ 0.9750, respectively. Furthermore, the degrees of truth of propositions P (11.4)∧
Q(11.4), P (11.4)∨Q(11.4) and ¬P (11.4) are given by µA∩B(11.4) ≈ 0.6622, µA∪B(11.4) ≈ 0.9750 and

µAc(11.4) = 1 − µA(11.4) ≈ 0.3378, respectively. △

Remark 30. We have shown in Remark 20 that operations on fuzzy sets are a generalization of the

corresponding operations on crisp sets. This fact ensures that the fuzzy logical operators ∧, ∨ and ¬
preserve the corresponding operations in classical propositional logic.

In effect, the operations of conjunction, disjunction and negation of the Boolean algebra on {0, 1}

8As described in the Introduction of the present text (section 1), fuzzy logic propositions typically represent vague
predicates which are satisfied to a certain degree, such as “the building x is tall”, “the product x is cheap”, or “the
painting x is an Impressionist painting”. This differs from the kind of predicates that are typically represented by
classical logic propositions, which accept binary true or false values, such as “the number x is prime”, “the person x is
alive”, or “the phrase x is a palindrome”.
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are preserved [77; 51, ch. 8]:

0 ∧ 0 = t(0, 0) = 0 0 ∨ 0 = s(0, 0) = 0 ¬0 = c(0) = 1

0 ∧ 1 = t(0, 1) = 0 0 ∨ 1 = s(0, 1) = 1 ¬1 = c(1) = 0

1 ∧ 0 = t(1, 0) = 0 1 ∨ 0 = s(1, 0) = 1

1 ∧ 1 = t(1, 1) = 1 1 ∨ 1 = s(1, 1) = 1

where t is a t-norm and s is a t-conorm such that ⟨t, s⟩ is a dual pair, and c(x) = 1 − x denotes the

fuzzy complement operation. △

For an in-depth study of the mathematical foundations of fuzzy logic, the reader is referred to [83].

2.4 Application: design and implementation of a fuzzy rule-based system

An early use case of fuzzy set theory and fuzzy logic in the field of Artificial Intelligence has been

the design of fuzzy rule-based systems (also commonly referred to as fuzzy inference systems). The

goal of these systems is to make predictions or decisions based on input data and a set of fuzzy

logic rules, using the framework provided by fuzzy set theory. One application of such systems which

appears frequently in the literature is the prediction of crop yield, that is, the amount of a crop that

is produced on a given area of land in a single growing season.

In this section, we construct a fuzzy rule-based system to predict the crop yield of rice plants9.

According to [85], two of the most important factors that determine the crop yield (Y) of rice plant

varieties are the panicle number per area (P) and the growth period (G) of the plants10,11. We develop

a fuzzy rule-based system to predict Y based on P and G. The system will be implemented and tested

in Python using a dataset of 534 samples of rice plants, for which the values of P, G and Y are known.

The dataset is obtained from [85].

In order to construct the fuzzy rule-based system, the dataset has to be previously processed.

Once the dataset is processed, four steps are followed for the design of the system [51]:

(i) fuzzy sets are defined for each of the variables involved in the system (P, G and Y),

(ii) the input variables (P and G) are fuzzified, that is, for each input variable, we calculate the

membership value for each of the corresponding fuzzy sets,

(iii) a set of rules (fuzzy inference rules) are defined and evaluated to infer the membership value

of each fuzzy set associated to the output variable (thus obtaining the fuzzy output), and

(iv) the fuzzy output is defuzzified, that is, it is transformed into the crisp predicted value for Y.

Figure 4 depicts the scheme of a fuzzy rule-based system. We discuss each of these steps in the

following subsections. Afterward, we discuss the results of the implementation of the system.

Figure 4: Scheme of a fuzzy rule-based system.

9The idea for this fuzzy rule-based system is based on [84], where it was implemented for the prediction of crop
yields of Sorghum plants. The system presented here is adapted to yields of rice plants, and it is based on the statistical
analysis performed in [85]. Furthermore, here we present a simplified version with respect to the one described in [84],
with the purpose of illustrating this early application of fuzzy set theory. In particular, we consider only two input
variables (panicle number and growth period) to predict the yield, and less fuzzy sets for each variable.

10 It is shown in [85] that the factors that influence the crop yield of rice plant varieties vary depending on the type
of rice plant. We focus here on the Japonica inbred type of rice plants, for which P and G are shown in [85] to be the
most significant factors that influence Y.

11Crop yield (Y) is defined here as the amount of crop produced per unit of area, measured in tons per hectare
(t/ha). The panicle number per area (P) is defined as the number of panicles of the crop per unit of area, measured in
millions of panicles per hectare (million/ha). The growth period (G) of the crop, defined as the number of days between
the sowing of the seeds and the harvest of the crop, is measured in days (d).
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Description of the dataset and data processing

sample ID panicle growth yield

1 3.975 184.0 6.7500

2 2.850 125.0 6.4275

3 4.500 147.5 7.2285

4 5.100 167.5 8.7150

5 3.675 180.0 7.7820

Table 2: Excerpt of the dataset used to im-
plement the fuzzy rule-based system.

panicle growth yield

count 534.0 534.0 534.0

mean 3.4708 153.4152 8.8879

std 0.5527 14.8409 0.8978

min 2.55 123.4 6.4011

10% 2.895 135.0 7.713810

25% 3.0638 142.0 8.4034

50% 3.3075 154.0 8.8557

75% 3.75 160.725 9.4193

90% 4.296 175.97 10.0995

max 5.115 191.5 11.19

Table 3: Description of the dataset used
for the prediction of crop yields. The sta-
tistical indicators std, 10%, 25%, 50%, 75%

and 90% correspond to the standard devi-
ation, and the 10th, 25th, 50th, 75th and
90th percentiles, respectively. The values are
rounded to four decimal places.

The dataset used to implement the system consists of

534 samples corresponding to different varieties of rice

plants, and 3 variables: the panicle number per area

(P), the growth period (G) and the crop yield (Y).

Table 2 shows an excerpt of the dataset. Columns

panicle, growth and yield correspond to variables

P, G and Y, respectively.

The columns panicle and growth, corresponding

to the input variables P and G, are used by the system

to predict the output variable Y. The values in the

column yield are the real values of Y for each sample,

and will be used to test the performance of the system

by comparing the predicted and the real values for Y.

The data, obtained from [85], has been processed

here in the following way: (i) the samples of the

Japonica inbred type of rice plants have been selected

(see footnote 10), (ii) the samples with missing values

have been removed, and (iii) for each column, outliers

have been removed12. The resulting dataset consists

of 534 samples of rice plants, with no missing values or

outliers. Table 3 shows the description of the dataset,

including common statistical indicators.

The processing of the data has been done using

the Pandas library in the Python 3 programming language. The code used for the data processing

and the resulting dataset is available in the Github repository found online at: https://github.com/

loredanasandu/tfg-fuzzy-logic-artificial-intelligence. An extract with the relevant parts of the code is

included in Appendix A, section A.1.

Having processed the dataset, we now proceed to implement the fuzzy rule-based system. We start

by defining the fuzzy sets for each of the variables.

Definition of the fuzzy sets

P G Y

Very low VLP VLG VLY

Low LP LG LY

Medium MP MG MY

High HP HG HY

Very high VHP VHG VHY

Table 4: Notation for the fuzzy sets con-
sidered in the fuzzy rule-based system.

For each of the input variables (P and G) and the out-

put variable (Y), we define five fuzzy sets, which repre-

sent the linguistic terms “very low” (VL), “low” (L),

“medium” (M), “high” (H) and “very high” (VH).

The notation used for every fuzzy set is specified in

Table 4. The membership functions of these fuzzy sets

are defined in Table 5 and represented in Figure 5.

To define the membership functions (namely the bounds of the intervals of the piece-wise functions),

the 10th, 25th, 50th, 75th and 90th percentiles of each column in the dataset were used (Table 3). Also,

the membership functions are defined for the range of the data (that is, between the minimum and

maximum values of the corresponding column in the dataset). For example, considering the definition

of µV LY in Table 5, the values 7.71, 8.4, 6.4 and 11.19 are the 10th percentile, the 25th percentile,

the minimum and the maximum of the corresponding column yield in the dataset, respectively. The

same procedure was used to define the rest of membership functions.

12More specifically,we remove the samples for which any feature is outside the range of (Q1, Q99), where Q1 and
Q99 are the 1st and 99th percentiles of the data for the corresponding feature, respectively. Removing the outliers
is a common practice when implementing artificial intelligence systems, primarily machine learning and deep learning
models [39]. It is done in order to avoid the influence of outliers in the training of the models, this way improving the
accuracy of the predictions.
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P G Y

VL µV LP (x) =


1 if x < 2.9
3.07−x

0.17 if 2.9 ≤ x ≤ 3.07

0 if x > 3.07

µV LG(x) =


1 if x < 135.0
142.0−x

7.0 if 135.0 ≤ x ≤ 142.0

0 if x > 142.0

µV LY (x) =


1 if x < 7.71
8.4−x

0.7 if 7.71 ≤ x ≤ 8.4

0 if x > 8.4

L µLP (x) =


x−2.9
0.17 if 2.9 ≤ x ≤ 3.07

3.31−x
0.24 if 3.07 ≤ x ≤ 3.31

0 if x < 2.9 or 3.31 < x

µLG(x) =


x−135.0

7.0 if 135.0 ≤ x ≤ 142.0
154.0−x

12.0 if 142.0 ≤ x ≤ 154.0

0 if x < 135.0 or 154.0 < x

µLY (x) =


x−7.71

0.7 if 7.71 ≤ x ≤ 8.4
8.86−x

0.46 if 8.4 ≤ x ≤ 8.86

0 if x < 7.71 or 8.86 < x

M µMP (x) =


x−3.07

0.24 if 3.07 ≤ x ≤ 3.31
3.75−x

0.44 if 3.31 ≤ x ≤ 3.75

0 if x < 3.07 or 3.75 < x

µMG(x) =


x−142.0

12.0 if 142.0 ≤ x ≤ 154.0
160.7−x

6.7 if 154.0 ≤ x ≤ 160.7

0 if x < 142.0 or 160.7 < x

µMY (x) =


x−8.4
0.46 if 8.4 ≤ x ≤ 8.86

9.42−x
0.56 if 8.86 ≤ x ≤ 9.42

0 if x < 8.4 or 9.42 < x

H µHP (x) =


x−3.31

0.44 if 3.31 ≤ x ≤ 3.75
4.3−x
0.55 if 3.75 ≤ x ≤ 4.3

0 if x < 3.31 or 4.3 < x

µHG(x) =


x−154.0

6.7 if 154.0 ≤ x ≤ 160.7
175.97−x

15.27 if 160.7 ≤ x ≤ 175.97

0 if x < 154.0 or 175.97 < x

µHY (x) =


x−8.86

0.56 if 8.86 ≤ x ≤ 9.42
10.1−x

0.68 if 9.42 ≤ x ≤ 10.1

0 if x < 8.86 or 10.1 < x

VH µV HP (x) =


0 if x < 3.75
x−3.75

0.55 if 3.75 ≤ x ≤ 4.3

1 if x > 4.3

µV HG(x) =


0 if x < 160.7
x−160.7

15.27 if 160.7 ≤ x ≤ 175.97

1 if x > 175.97

µV HY (x) =


0 if x < 9.42
x−9.42

0.68 if 9.42 ≤ x ≤ 10.1

1 if x > 10.1

Table 5: Membership functions for the fuzzy sets considered in the fuzzy rule-based system. The membership functions
for P are defined for all real numbers x ∈ [2.55, 5.12], the membership functions for G are defined for all x ∈ [123.4, 191.5],
and the membership functions for Y are defined for all x ∈ [6.4, 11.19].

Figure 5: Graphical representation of the membership functions of the fuzzy sets defined for variable P (A), variable G
(B) and variable Y (C).

Fuzzification of the input variables

We now fuzzify the input variables P and G. For each of these variables, we calculate the membership

value of each of the corresponding fuzzy sets.

As an example of the result of the fuzzification process, consider the value x = 147.5 for the

variable G. The membership values of x for each of the fuzzy sets associated to G are given by

µLG(147.5) =
154.0 − 147.5

12.0
≈ 0.5417, µMG(147.5) =

147.5 − 142.0

12.0
≈ 0.4583,

µV LG(147.5) = µHG(147.5) = µV HG(147.5) = 0.0.

Table 6 shows the result of the fuzzification of variables P and G for the samples shown in the

excerpt of the dataset in Table 2.

sample ID VLP LP MP HP VHP VLG LG MG HG VHG

1 0.0 0.0 0.0 0.5879 0.4121 0.0 0.0 0.0 0.0 1.0
2 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 1.0 0.0 0.5417 0.4583 0.0 0.0
4 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.5556 0.4444
5 0.0 0.0 0.1695 0.8305 0.0 0.0 0.0 0.0 0.0 1.0

Table 6: Result of the fuzzification process for an excerpt of the dataset used to implement the fuzzy rule-based system.
The second to last column correspond to the membership values of the fuzzy sets for the input. The values are rounded
to four decimal places.
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Definition and evaluation of the fuzzy logic rules

We now proceed to define the fuzzy logic rules, and evaluate them in order to infer the membership

value of the fuzzy sets corresponding to the output variable (Y). The rule base is composed of 25 rules

in the form of fuzzy logic statements. The rules considered here follow the following format:

IF P is <fuzzy set for P> AND G is <fuzzy set for G> THEN Y is <fuzzy set for Y>

For each combination of fuzzy sets for the variables P and G, there is a rule that determines the

fuzzy set for the output variable Y and its inferred (predicted) membership value, by performing the

∧ operation on the membership values of the antecedent fuzzy sets. For example, the rule

IF P is LP AND G is MG THEN Y is LY

infers the membership value of the fuzzy set LY , by performing the ∧ operation on the membership

values of the antecedent fuzzy sets LP and MG:

pLY = µLP (x1) ∧ µMG(x2) = t(µLP (x1), µMG(x2)),

where pLY denotes the membership value predicted by this rule for the consequent fuzzy set LY, t is

a t-norm, and x1 and x2 are the given values of variables P and G, respectively, for a given sample in

the dataset.

VLP LP MP HP VHP

VLG VLY VLY LY LY MY

LG LY LY MY MY MY

MG LY LY MY MY HY

HG MY MY HY HY VHY

VHG MY MY HY HY VHY

Table 7: Rule base considered for the fuzzy rule-
based system. The column names and row names
correspond to the fuzzy sets considered in the an-
tecedent of each rule. The values in the table corre-
spond to the resulting fuzzy set, in the consequent
of each rule.

Table 7 shows the specific fuzzy sets considered

in each of the 25 rules13. All rules are evaluated

for each sample in the dataset. If, for any given

sample, multiple membership values for the same

fuzzy set result from different rules, we aggregate

them by performing the ∨ operation on the differ-

ent membership values of the consequent fuzzy set.

For example, if the rules

IF P is VHP AND G is HG THEN Y is VHY

IF P is VHP AND G is VHG THEN Y is VHY

are evaluated given the sample with values x = 5.1 for P and x = 167.5 for G (sample 4 in the excerpt

of the dataset in Table 6) using the ⟨tmin, smax⟩ dual pair, the membership values for V HY resulting

from each rule are given by

p1V HY = µV HP (5.1) ∧ µHG(167.5) = tmin(µV HP (5.1), µHG(167.5)) = tmin(1.0, 0.5556) = 0.5556

p2V HY = µV HP (5.1) ∧ µMG(167.5) = tmin(µV HP (5.1), µMG(167.5)) = tmin(1.0, 0.4444) = 0.4444

The predicted membership value of the fuzzy set V HY is then given by

pV HY = p1V HY ∨ p2V HY = smax(p1V HY , p
2
V HY ) = smax(0.5556, 0.4444) = 0.5556.

Table 8 shows the result of the evaluation of the rules for the samples of the excerpt of the dataset

shown in Table 2. The values in the table correspond to the membership values for each fuzzy set

for Y, predicted by the system. The evaluation shown in the table has been performed using the

⟨tmin, smax⟩ dual pair. The system will be tested using different dual pairs.

13Using results from [85], many different rule bases have been tested. The rule base considered here has shown the
best performance for predicting the crop yield with the input data used in this example, using different dual pairs. In
subsequent section, methods to generate the rule base automatically, combining neural networks and fuzzy set theory,
will be introduced and tested.
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sample ID predicted VLY predicted LY predicted MY predicted HY predicted VHY

1 0.0 0.0 0.0 0.5879 0.4121
2 1.0 0.0 0.0 0.0 0.0
3 0.0 0.5417 0.4583 0.0 0.0
4 0.0 0.0 0.0 0.0 0.5556
5 0.0 0.0 0.0 1.0 0.0

Table 8: Result of the evaluation of the rules for an excerpt of the dataset used to implement the fuzzy rule-based
system. The values in the table correspond to the predicted membership values of each fuzzy set for Y. The evaluation
shown here has been performed using the ⟨tmin, smax⟩ dual pair.

Defuzzification of the output

Having evaluated the rules, the last step is to defuzzify the output. We transform the predicted

membership values for the output fuzzy sets into a crisp value for Y, which is the predicted crop yield

resulting from the system. We will use the centroid method to defuzzify the output14.

The centroid method of defuzzification for variable Y is defined as follows (an example is provided

below). Consider the fuzzy set VLY, with membership function µV LY (defined in Table 5), and let

pV LY be the membership value predicted by the system for this fuzzy set. We define the function

µp
V LY (x) := min (µV LY (x), pV LY ), ∀x ∈ [6.4, 11.19],

Define µp
LY (x), µp

MY (x), µp
HY (x) and µp

V HY (x) analogously. Next, consider the function

µp
Y (x) := max (µp

V LY (x), µp
LY (x), µp

MY (x), µp
HY (x), µp

V HY (x)), ∀x ∈ [6.4, 11.19].

The centroid method of defuzzification returns the center of gravity of the area under the curve

of the function µp
Y (x), that is, the point xc ∈ [6.4, 11.19] such that the area under the curve of µp

Y (x)

between 6.4 and xc is equal to the area under the curve of µp
Y (x) between xc and 11.19. The value of

xc is given by

xc =

∫ 11.19

6.4
x · µp

Y (x)dx∫ 11.19

6.4
µp

Y (x)dx
,

which is the predicted crop yield resulting from the system.

As an example, consider the sample with values x = 4.5 for P and x = 147.5 for G. We have seen

previously that the membership values for the fuzzy sets LY and MY predicted by the system are

pLY = 0.5417 and pMY = 0.4583, respectively, and 0.0 for the rest of the fuzzy sets (sample 3 in Table

8). We plot the functions µp
LY , µp

MY and µp
Y , obtained computationally, in Figure 6. The center of

gravity of the area under µp
Y (x) is given by xc ≈ 9.2062 (approximated computationally). Thus, the

predicted crop yield for the sample with values x = 4.5 for P and x = 147.5 for G is 9.2062.

Figure 6: Graphical representation of the functions µp
MY (A), µp

HY (B) and µp
Y (C) for the sample with values x = 4.5

for P and x = 147.5 for G. Dashed lines represent the membership functions of the fuzzy sets for Y. The center of
gravity of the area under the curve of µp

Y is given by xc ≈ 9.2062.

14There are other defuzzification methods, such as the center of maximum, which takes the middle value of the α-cut
for the set with the maximum predicted membership value and for α the predicted membership value. Although it is
computationally more efficient, this method is normally less accurate than the centroid method [81], and it is not used
here.
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sample ID predicted yield

1 10.0136

2 7.2406

3 9.2062

4 10.3966

5 9.458154

Table 9: Predicted crop yield for
each sample for an excerpt of the
dataset, rounded to four decimal
places. The result is based on
the predicted membership values
shown in Table 8.

Table 9 shows the predicted crop yield for each sample of

the excerpt of the dataset, obtained with the centroid method

of defuzzification.

We now proceed to test the performance of the system with

all the samples in the dataset, and using different dual pairs.

Results

We apply the fuzzy rule-based system to all the samples in the

dataset. We use the ⟨tmin, smax⟩, ⟨t L, s L⟩ and ⟨tπ, sπ⟩ dual pairs,

introduced in section 2.3. To measure the performance of the system, we use the Root Mean Square

Error (RMSE), which is defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (7)

where N is the number of samples in the dataset (in our case, N = 534), yi is the real value of the

crop yield for the i-th sample, and ŷi is the predicted value of the crop yield for the i-th sample. The

RMSE is a measure of the differences between the values predicted by the system and the real values

of the crop yield. The lower the RMSE, the better the performance of the system. Table 10 shows the

RMSE obtained for the prediction of crop yields for all samples in the dataset, using the ⟨tmin, smax⟩,
⟨t L, s L⟩ and ⟨tπ, sπ⟩ dual pairs.

Dual pair RMSE

⟨tmin, smax⟩ 0.8595

⟨t L, s L⟩ 0.8676

⟨tπ , sπ⟩ 0.8606

Table 10: RMSE for the pre-
diction of the crop yield us-
ing the fuzzy rule-based sys-
tem, for each dual pair. The
RMSE is rounded to four dec-
imal places.

Although there is no significant difference in performance among

the three dual pairs, we notice that ⟨tmin, smax⟩ shows the best per-

formance, and ⟨t L, s L⟩ shows the worst performance. Differences in

performance with respect to dual pairs will also be observed in the

results of other predictive models using fuzzy logic, such as fuzzy

neural networks, which will be presented in subsequent sections.

A plot of the predicted and the real crop yields for samples 50 to

450 in the dataset is included in Figure 7. The plot shows that the

system is able to predict the changes in crop yield among different

rice plant varieties with a notable degree of accuracy for some samples. However, the prediction is not

accurate for all samples, nor for a large number of them. This should be taken into account before

generalizing the rules and methods used here to new data, or to different contexts.

The dataset and code for the implementation and testing of the fuzzy rule-based system is available

in the Github repository found online at: https://github.com/loredanasandu/tfg-fuzzy-logic-artificial-intelligence.

An extract with the relevant parts of the code is included in Appendix A, section A.2.

The reader interested in delving deeper into the subject of fuzzy set theory and its applications

(including the design and implementation of fuzzy rule-based systems) is referred to [51, 81].

Figure 7: Real and predicted crop yields for samples 50 to 450 in the dataset, using the fuzzy rule-based system with ⟨tπ , sπ⟩.
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3 Fuzzy neural networks

The aim of this section is to present the mathematical model known as fuzzy neural network. This

model integrates fuzzy logic operators into the classical structure of neural networks. The new struc-

ture resulting from this approach is shown to reveal underlying logical relationships between the input

and output variables, which cannot be explicitly extracted from classical neural networks. Therefore,

fuzzy neural networks are able to generate more interpretable results than classical neural networks.

We start by introducing the fundamental notions related to neural networks, which are then

extended to fuzzy neural networks. We also demonstrate the application of these models to the

prediction of crop yields, and compare the results to those obtained with the fuzzy rule-based system

presented in the previous section.

3.1 Neural networks: an overview

A neural network is a mathematical model inspired by the biological neural networks found in the

human brain. It is designed to learn and approximate complex relationships between input and output

data by adjusting its internal parameters through a training process.

x1

x2

x3

y

Input Hidden Output

Figure 8: An example feed-forward neural net-
work with input vector x = (x1, x2, x3), one
hidden layer with four neurons and one output
scalar y.

The architecture of a neural network15 typically

consists of multiple layers, including an input layer,

one or more hidden layers, and an output layer. Each

layer contains a set of neurons, which are intercon-

nected by weighted connections. A classical neural

network can be represented by a directed graph like

the one presented in Figure 8.

Let us now proceed with the formal description of

a neural network.

A neuron is a function of the form

y(x) = a(x ·w + b) = a

(
n∑

i=1

wi · xi + b

)

where x = (x1, . . . , xn) is the input vector, w = (w1, . . . , wn) is the weight vector, b is the bias, and

a is an activation function. The weight vector w and the bias b are the parameters of the neuron.

The activation function a is typically a non-linear function that transforms its input into a bounded

output. We include a list of some of the most commonly used activation functions in Table 11. The

output y of the neuron is the scalar resulting from applying the activation function a to the weighted

sum of the inputs plus the bias.

Activation function Description

Rectified linear unit (ReLU) f : R → [0,+∞) ⊂ R such that f(x) = max(0, x)

Sigmoid f : R → (0, 1) ⊂ R such that f(x) = 1
1+e−x

Hyperbolic tangent f : R → (−1, 1) ⊂ R such that f(x) = tanh(x)

Table 11: List of some of the most commonly used activation functions. For further details these and other activation
functions, including results regarding their performance, the reader is referred to [39, 87].

15 Though there are multiple architectures of neural networks in the literature, we will focus here on feed-forward
neural networks, also commonly referred to as multilayer perceptrons (MLP). The description of this model provided
here is based on the approach presented in [39, 86].
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A neural network (NN) is a composition of neurons. It typically consists of an input layer, one

or more hidden layers, and an output layer. Each layer contains a set of neurons, and the neurons in

each layer are connected to the neurons in the next layer in the sense that the outputs of the neurons

in one layer are the inputs of the neurons in the next layer. The input of the neural network is the

input of the first layer in the network, and its output is the output of the last layer (see Figure 8 for

a graphical representation).

More precisely, consider a neural network with L + 1 layers. Let n0, . . . , nL be the number of

neurons in each layer, and let a0, . . . , aL be the activation functions of each layer, where the 0-th layer

denotes the input layer, and the L-th layer denotes the output layer. The output of the k-th neuron

in the l-th layer is given by

z
(l)
k (x) = al

(
nl−1∑
i=1

w
(l)
ki z

(l−1)
i (x) + b

(l)
k

)
,

where x is the input vector of the neural network, z
(l−1)
i (x) is the output of the i-th neuron in the

(l − 1)-th layer, w
(l)
ki is the weight of the connection between the i-th neuron in the (l − 1)-th layer

and the k-th neuron in the l-th layer, and b
(l)
k is the bias of the k-th neuron in the l-th layer, with

l ∈ {1, . . . , L} and k ∈ {1, . . . , nl}. The output of the i-th neuron in the 0-th layer is z
(0)
i (x) = xi,

where xi is the i-th component of the input vector x.

The vector of outputs of the neurons at the l-th layer is

z(l)(x) = al

(
W(l)z(l−1)(x) + b(l)

)
=: fl

(
z(l−1)(x)

)
,

where W(l) =
(
w

(l)
ki

)nl,nl−1

k,i=1
is the matrix of weights of the connections between the neurons in the

(l−1)-th layer and the neurons in the l-th layer, b(l) =
(
b
(l)
k

)nl

k=1
is the vector of biases of the neurons

in the l-th layer, and z(l−1)(x) is the vector of outputs of the neurons in the (l − 1)-th layer, for

l ∈ {1, . . . , L}. The vector z(0)(x) of outputs of the neurons at the 0-th layer is z(0)(x) = x.

The neural network is the composition of fl for l = 1, . . . , L, that is, the function

F : Rn0 −→ RnL

x 7−→ fL
(
fL−1

(
· · · f1(x) · · ·

))
Note that, if the activation functions are chosen to be linear functions, then the neural network is

a linear function, since the composition of linear functions is a linear function. Therefore, non-linear

activation functions are typically chosen, in order for the neural network to be able to approximate

non-linear functions16.

The training process of a neural network consists of a series of iterations over input data with

known output, where the objective is to minimize the error between the output of the neural network

(the predicted output) and the known output. In each iteration, the parameters of the neural network

(namely the weights w and the biases b in the notation above) are adjusted to minimize this error17,

which is typically measured using a loss function. We include a list of some of the most commonly used

loss functions in Table 12. In each iteration, the neural network is expected to improve its performance,

that is, to decrease the value of the loss function further. The training process is typically stopped

when the loss function reaches a minimum, or when the performance of the neural network stops

improving significantly.

16Specific choices of activation functions depend on the application of the neural network. The ReLU function has
been shown to perform well for many use cases [87], and is one of the most commonly used in hidden layers. Regarding
the output layer, one should consider the range of the output variables, among other factors. One of the most commonly
used activation functions in the output layer is the sigmoid function, since it returns a real value in (0, 1), which can be
interpreted as a probability (for example, in classification problems), or be easily rescaled to adapt to other cases.

17The optimization of the parameters is typically performed using variants of the gradient descent algorithm. It is
outside of the scope of this text (and not in line with its objectives) to provide a more detailed description of the training
process. The interested reader is referred to [39] for an in-depth mathematical description of the training process.
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Loss function Description

Mean squared error (MSE) L(y, ŷ) = 1
N

∑N
i=1(yi − ŷi)

2

Mean absolute error (MAE) L(y, ŷ) = 1
N

∑N
i=1 |yi − ŷi|

Binary cross-entropy L(y, ŷ) = − 1
N

∑N
i=1

(
yi log(ŷi) + (1 − yi) log(1 − ŷi)

)
Table 12: List of some of the most commonly used loss functions. Here y = (y1, . . . , yN ) denotes the vector of real
values of the output variable, ŷ = (ŷ1, . . . , ŷN ) denotes the vector of predicted values of the output variable, and N is
the number of samples in the dataset. For further details on these and other loss functions, the reader is referred to [39,
87]

Implementation and analysis of a neural network

To illustrate the concepts introduced in this section, we present a simple application of a neural

network to a prediction task. We train a neural network for the same use case as the fuzzy rule-based

system presented in section 2.4, that is, the prediction of the crop yield (Y) of rice plant varieties

based on the number of panicles per plant (P) and the number of grains per panicle (G). The dataset

used in this example is the same as the one used for the implementation of the fuzzy rule-based system

in section 2.4.

The neural network used here has two hidden lay-

ers with eight and four neurons each. The input layer

has two neurons (corresponding to P and G, respec-

tively) and the output layer has one neuron (corre-

sponding to the predicted value for Y). Figure 9 shows

a graphical representation of the neural network used

in this example.

The activation function used in the hidden and

output layers is the ReLU function. This activation

function has been chosen for the hidden layers because

it has been shown in the literature to perform better

than other activation functions in such layers [87];

and it has been chosen for the output layer because

the ReLU function returns a real number in [0,+∞),

which is the desired range of the output variable Y.

Figure 9: Graphical representation of the neural
network used for the prediction of crop yields.
Elaborated with NN-SVG [88].

In more formal terms, the neural network used in this example is defined by the following equations:

z(1)(x) = max
(
0,W(1)x + b(1)

)
, (8)

z(2)(x) = max
(
0,W(2)z(1)(x) + b(2)

)
, (9)

y(x) = max
(
0,w(3)z(2)(x) + b(3)

)
, (10)

where x = (x1, x2) ∈ R2 is the input vector, z(1)(x) = (z
(1)
1 (x), . . . , z

(1)
8 (x)) ∈ R8 is the vector of

outputs of the neurons in the first hidden layer, z(2)(x) = (z
(2)
1 (x), . . . , z

(2)
4 (x)) ∈ R4 is the vector of

outputs of the neurons in the second hidden layer, and y(x) ∈ R is the output of the neural network.

The parameters of the neural network are the weights W(1) ∈ R8×2, W(2) ∈ R4×8 and w(3) ∈ R4,

and the biases b(1) ∈ R8, b(2) ∈ R4 and b(3) ∈ R. Here the max function is applied element-wise to

the input vectors.

In order to train and test the neural network, the dataset is split into a training set and a test set,

with 80% and 20% of the samples, respectively. The training set is used to train the neural network,

and the test set is used to test the performance of the neural network. The model is trained using the
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mean squared error (MSE) as the loss function, over 100 iterations18.

The neural network achieves an MSE of 0.3024 for the test set after 100 iterations. This corresponds

to an RMSE (defined in (7)) for the predicted Y of 0.5499, which is significantly lower than the RMSE

values obtained with the fuzzy rule-based system presented in section 2.4 (see Table 10). This result

shows that the neural network is able to predict the crop yield with a higher degree of accuracy than

the previous approach, which is also reflected in the plots of the predicted and the real crop yields for

the test set, shown in Figure 10.

Figure 11 shows the value of the MSE for the training and test sets in each iteration. The plot

shows that the MSE decreases significantly in the first iterations, and then decreases more slowly until

it reaches a minimum. It is worth noting that the MSE for the test set is lower than the MSE for the

training set in all the iterations. This behaviour is not common (the MSE for the test set is typically

higher than the MSE for the training set). Although it may be an indicator of the good performance

of the model, it may also be due to the small size of the dataset used in this example.

Last, it is worth extracting the weights of the connections between the different neurons in the

neural network, in order to interpret the relationships between the input and output variables. Using

the notation introduced in equations (8) to (10) the weights and biases of the neural network are the

following:

W(1) =



0.1168 −0.1180

0.1497 −0.0343

0.6639 0.1744

−0.1445 −0.5547

0.0021 −1.1560

0.1609 0.0969

−0.2501 0.6321

0.0307 0.3202


, b(1) =



1.1781

−0.4606

−0.4792

1.4672

0.0298

0.6711

0.6602

1.3413


,

W(2) =


−0.0336 0.0931 −0.0170 −0.1980 −0.2004 −0.1718 −0.3212 −0.2294

0.0610 0.2222 0.0028 −0.1829 0.1443 −0.1522 −0.0875 −0.2119

0.6226 −0.2907 0.4525 0.7810 −0.5792 0.5858 0.4467 0.6720

0.7013 0.0545 0.4847 0.8116 −0.4004 0.5870 0.1678 0.5712

, b(2) =


−0.0718

0.1838

0.8107

1.0152

,

w(3) =
(

0.2536 −0.4154 0.8455 1.1169
)
, b(3) = 1.0872.

In the case of feed-forward neural networks, the weights of the connections between one neuron

and the next can be seen as a measure of the influence of that neuron to the next. By analyzing the

chain of connections and their weights, we can extract information about the relationships between the

input and output variables. For example, we observe that, among the neurons in the last hidden layer,

the fourth one (with weight 1.1169) has the greatest influence on the output variable. Furthermore,

we observe that all the neurons in the first hidden layer have a positive influence on the fourth neuron

in the last hidden layer (evidenced by the positive values in the last row of W(2)).

Figure 10: Real and predicted crop yields for the samples in the test set, using the neural network.

18For the reader interested in technical details about the training process, the neural network implemented here
has been trained using the Adam algorithm (a variant of the gradient descent algorithm) [89], with a learning rate of
0.001, for the optimization of the parameters. This optimizer and learning rate have shown the best performance in
preliminary tests involving many different trials with different optimization algorithms and learning rates. It is worth
noting that the input of the network has been scaled appropiately to have zero mean and unit variance, in order to
improve the performance of the training process.
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Figure 11: MSE loss for the training and test sets in every iteration of the training process for the neural network.
Both axes are in logarithmic scale.

However, it becomes apparent that extracting this information is not straightforward, and it be-

comes less clear as the number of neurons and layers in the neural network increases19. This exemplifies

how the complexity inherent in neural networks makes it difficult to extract information about the

relationships between the input and output variables, which leads to a lack of interpretability. Fur-

thermore, the use of activation functions also makes the operations of the neurons less interpretable.

Therefore, although the use of neural networks for the prediction of crop yields gives better results

in terms of accuracy, it is not as interpretable as the fuzzy rule-based system presented in section 2.4.

In subsequent sections, we will see an approach that aims to combine the accuracy of neural networks

with the interpretability of fuzzy logic, and which shows positive results in this regard.

The neural network presented in this example has been implemented and trained using the PyTorch

library [90] in the Python 3 programming language. The code for the implementation, training and

testing of the neural network is available in the Github repository found online at: https://github.

com/loredanasandu/tfg-fuzzy-logic-artificial-intelligence. An extract with the most relevant parts of

the code can be found in Appendix A, section A.3.

3.2 Fuzzy neural networks

Fuzzy neural networks [31] are an extension of classical neural networks in which the classical neurons

are replaced by fuzzy neurons. Recall that a non-fuzzy neuron is a function of the form

y(x) = a(x ·w + b) = a
( n∑
i=1

wi · xi + b
)

where x = (x1, . . . , xn) is the input vector, w = (w1, . . . , wn) is the weight vector, b is the bias, and a

is the activation function. For the sake of simplicity in the argument that follows, we consider b = 020.

In such neuron, two computations are performed: (i) the products of the inputs xi and the weights

wi, and (ii) the summation of these products.

We present two types of fuzzy neurons [91]. On the one hand, fuzzy or-neurons are constructed by

replacing the products by and (∧) operations, modelled with a t-norm, and replacing the summation

by an or (∨) operation, modelled as a t-conorm. The resulting fuzzy neuron is a function of the form

y(x) =

n∨
i=1

(xi ∧ wi) =
n

S
i=1

(xi twi)

where x = (x1, . . . , xn) is the input vector, w = (w1, . . . , wn) is the weight vector, and ∨ and ∧ are

19It is worth noting that the neural network presented here is intended to be simple and with low dimensionality in
order to illustrate the concepts and facilitate the interpretation of the results. The models commonly used in literature
and the industry are much more complex, with many more neurons and layers.

20In the argument that follows, we define neurons which are based on fuzzy logic operators, with the aim of extracting
logical relationships between the variables. Removing the bias simplifies the model and, most importantly for our
purposes, it simplifies its interpretation. The addition of the bias to the model and the analysis of how it affects the
results is left for future work.
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modelled by a t-conorm S and a t-norm t, respectively.

On the other hand, fuzzy and-neurons are constructed by replacing the products by ∨ operations,

and replacing the summation by an ∧ operation. The resulting fuzzy neuron is a function of the form

y(x) =

n∧
i=1

(xi ∨ wi) =
n

T
i=1

(xi swi)

where x = (x1, . . . , xn) is the input vector, w = (w1, . . . , wn) is the weight vector, and ∧ and ∨ are

modelled by a t-norm T and a t-conorm s, respectively.

Recall that the activation function a included in non-fuzzy neurons is typically a non-linear function

that makes the neural network approximate non-linear functions. Therefore, by using non-linear t-

norms and t-conorms, the activation function a is not necessary in fuzzy neurons.

A fuzzy neural network is a composition of fuzzy neurons, analogously to the way that a classical

neural network is a composition of classical neurons, described in section 3.1. The input of the fuzzy

neural network is considered in terms of membership functions associated to designated fuzzy sets (that

is, the crisp input is fuzzified, as described in section 2.4). Moreover, both the original membership

values of the input, µ(xi), and the corresponding negations, 1 − µ(xi) are considered (thus making

the input of dimenstion 2n), in order to account for both positive and negative contributions of the

input in its relationship to the output21.

We consider each hidden layer to be composed either entirely of fuzzy and-neurons (and-layer), or

entirely of fuzzy or-neurons (or-layer)22. The output layer is composed entirely of or-neurons, with

each neuron corresponding to an output fuzzy set. We use or-neurons in this layer with the aim of

aggregating the multiple membership values obtained for the same fuzzy set, as described in section

2.4. The fuzzy output is then defuzzified in order to obtain crisp predicted values.

Figure 12 shows the scheme for an implementation of a hypothetical fuzzy neural network with

one hidden and-layer and one hidden or-layer. Note how the process for implementing this system

integrates elements from fuzzy rule-based systems and from classical neural networks.

Interpretation of fuzzy neurons in terms of logical relationships

The operations performed by fuzzy neurons can be interpreted as a realization of logical relationships.

We now describe how this interpretation is done. Consider the same notation introduced above, with

x = (x1, . . . , xn) is the input vector, w = (w1, . . . , wn) is the weight vector.

Or-neurons combine the input values xi with the weights wi via the ∧ operation, and aggregate

the result with the ∨ operation. This is a realization of the logical disjunction

α1 ∨ α2 ∨ · · · ∨ αn

with αi denoting the proposition xi ∧wi. This is interpreted as a disjunction between the xi’s, where

the influence of each xi is determined (weighted) by the corresponding wi [31]. Due to the nature of

the ∧ operation, higher values of wi give a stronger influence of xi in the output of the neuron23.

21It may be argued that considering the corresponding negations of each membership value contributes to role that
a high-dimensionality of the input plays in the lack of interpretability of a neural network. However, the fuzzification of
the input allows us to interpret the input in terms of fuzzy sets, which is a more interpretable approach than the use of
raw data. Also, the use of the corresponding negations allows us to derive more complex logical relationships between
the input and output variables. Furthermore, the fuzzification of the input may be designed in order to reduce the
dimensionality of the input. For instance, in computer vision or image recognition, instead of using images as inputs
to the model (high-dimensional inputs) one can define fuzzy sets that represent specific characteristics useful for the
problem at hand, such as colour [92].

22In practical terms, this does not signify a significant limitation or loss of generality. It is common in the literature
and applications to consider each hidden layer to be composed entirely of fuzzy and-neurons or entirely of fuzzy or-
neurons. This facilitates the implementation of the model and the interpretation of the results.

23Note that the weights wi can therefore be interpreted as a measure of the influence of xi in the logical relationship.
This interpretation is in accordance with the one given for the weights in classical neural networks (section 3.1).
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Figure 12: Scheme for the implementation of a hypothetical fuzzy neural network with one hidden and-layer and one
hidden or-layer. In this representation, x1, . . . xn are the crisp input variables to the system, and we fuzzify each
xi to have mi fuzzy sets, with corresponding membership functions µi1, . . . , µimi . We also consider the negations
1 − µi1, . . . , 1 − µimi , i ∈ {1, . . . , n}. The fuzzy neural network is composed of the input layer (which is given the
fuzzified input), a hidden and-layer, a hidden or-layer, and the output layer, which is composed of or-neurons. The
fuzzy neural network outputs the fuzzified predicted values, in terms of the membership values µ̂o1, . . . , µ̂omo . Last,
the output is defuzzified to obtain the crisp predicted value ŷ.

In the case of and-neurons, the input values xi are combined with the weights wi via the ∨
operation, and the result is aggregated with the ∧ operation. This is a realization of the logical

conjunction

β1 ∧ β2 ∧ · · · ∧ βn.

with βi denoting the proposition xi∨wi. This is interpreted as a conjunction between the xi’s, where,

similarly to the case of or-neurons, the influence of each xi is also determined by the corresponding

wi. However, the opposite weighting effect takes place: due to the nature of the ∨ operation, higher

values of wi give a weaker influence of xi in the output of the neuron.

Since a fuzzy neural network is a composition of fuzzy neurons, it can be interpreted as a (weighted)

composition of logical operations between the input membership values. This yields logical rules with

which to infer the output membership values from the input membership values. The process of

interpreting and extracting logical rules from a fuzzy neural network will be illustrated in the following

subsection.

Implementation and analysis of a fuzzy neural network

We illustrate the implementation and analysis of a fuzzy neural network considering the prediction of

crop yields of rice plants. We will compare this approach with the systems presented in section 2.4

and section 3.1.

Recall that our objective is to predict the crop yield (Y) of rice plant varieties based on the number
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of panicles per plant (P) and the growth period of the plant (G). The dataset used in this example is

the same as the one used for the implementations in section 2.4 and section 3.1. We also define the

same fuzzy sets for the input and output variables as in section 2.4 (see Table 4 for the notation and

Table 5 for the membership functions of the fuzzy sets).

The fuzzy neural network used here has two hidden layers: one and-layer with 20 neurons and

one or-layer with 10 neurons. The input layer has 20 neurons (corresponding to the fuzzified inputs

(µV LP , . . . , µV HP , µV LG, . . . , µV HG) and their negations (1−µV LP , . . . , 1−µV HP , 1−µV LG, . . . , 1−µV HG)),

and the output layer has 5 neurons (corresponding to the predicted membership values for the output

fuzzy sets (pV LY , . . . , pV HY )). For simplicity, we denote the input vector of membership values for P and

G as µ = (µ1, . . . , µ20) and the output vector of predicted membership values for Y as µ̂ = (µ̂1, . . . , µ̂5).

In formal terms, the fuzzy neural network used in this example is defined by the following equations:

z(1)m (µ) =
20

T
i=1

(
µi s w

(1)
i,m

)
, (11)

z(2)n (µ) =
20

S
i=1

(
z
(1)
i (µ) t w

(2)
i,n

)
, (12)

µ̂k(µ) =
10

S
i=1

(
z
(2)
i (µ) t w

(3)
i,k

)
, (13)

where µ = (µ1, . . . , µ20) denotes the vector of input membership values, z
(1)
m (µ) is the output of the

m-th neuron in the hidden and-layer (m ∈ {1, . . . , 20}), z
(2)
n (µ) is the output of the n-th neuron

in the hidden or-layer (n ∈ {1, . . . , 10}), and µ̂k(µ) is the predicted membership value for the k-th

output fuzzy set, with k ∈ {1, . . . , 5}. The parameters of the fuzzy neural network are the weights

W(1) =
(
w

(1)
i,m

)20,20
i,m=1,1

, W(2) =
(
w

(2)
i,n

)20,10
i,n=1,1

and W(3) =
(
w

(3)
i,k

)10,5
i,k=1,1

.

The defuzzification of the predicted membership values is performed in the same way as described

in section 2.4, that is, using the centroid method. This gives the predicted crisp value for the output

variable Y.

In order to train and test the system, the dataset is split into a training set and a test set, with

80% and 20% of the samples, respectively, as it was done in section 3.1. The model is trained using

MSE as the loss function24, over 25 iterations25.

The model has been trained with all the dual pairs (Table 1). It gives the best results when using

the product t-norm and the sum t-conorm, ⟨tπ, sπ⟩26. For the prediction of membership values, the

model achieves an MSE of 0.0898 in the test set after 25 iterations. After the defuzzification, the

system achieves an RMSE (defined in (7)) of 0.53715 for the prediction of Y, in the test set. Figure

13 shows the value of the MSE for the predicted membership values in the training and test sets in

24Here the model is trained to minimize the MSE between the predicted membership values (which are the output of
the model) and the real membership values for the fuzzy sets for Y, given each sample in the dataset. More specifically,
the loss function is defined as

MSE(µY , µ̂Y ) =
1

5

5∑
i=1

(µi − µ̂i)
2,

where µY = (µ1, . . . , µ5) denotes the vector of real membership values for the output fuzzy sets VLY, LY, MY, HY and
VHY for one sample of the dataset, and µ̂Y = (µ̂1, . . . , µ̂5) denotes the vector of predicted membership values for the
output fuzzy sets given the same sample.

25 Regarding technical details about the training process, the fuzzy neural network implemented here has been trained
using the Adam algorithm [89], with a learning rate of 0.1, which has shown the best performance in preliminary tests.

26 When using the dual pair ⟨tmin, smax⟩, the model learns (that is, optimizes its parameters) exceedingly slowly.
More specifically, the loss function decreases very slowly in the first iterations, and then the decrease stops (or it is
negligible) in the following iterations. Regarding technical considerations, these results have been obtained using the
Adam algorithm the optimization of the parameters, with a learning rate of 0.0001. It is the low learning rate that leads
to the slow pace at which the model learns in these conditions. However, the model does not learn at all when using
a higher learning rate. The Stochastic Gradient Descent (SGD) algorithm [93] for the optimization of the parameters
has also been tested. With this algorithm, the loss function stays constant regardless of the learning rate used.

When using the dual pair ⟨t L, s L⟩, the model is unable to learn, which is evidenced by the fact that the loss function
does not decrease (nor increase) in any of the iterations. The same results have been obtained for with both the Adam
and the SGD algorithm, for learning rates of different orders of magnitude.

More details and discussion about these results, as well as possible reasons, will be presented in section 4.
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Figure 13: Loss for the predicted membership values in the training set (left) and test set (right) in every iteration of
the training process of the fuzzy neural network, in terms of the MSE.

Figure 14: Real and predicted crop yields by the fuzzy neural network for the samples in the test set.

each iteration. Figure 14 shows the real and the predicted crisp values for Y in the test set.

The RMSE of 0.53715 obtained with the fuzzy neural network is significantly lower than the

RMSE of 0.8606 obtained with the fuzzy rule-based system presented in section 2.4, using the dual

pair ⟨tπ, sπ⟩. This shows that the fuzzy neural network is able to predict the crop yield with a higher

degree of accuracy than the fuzzy rule-based system. This result is expected, since the fuzzy rule-based

system evaluates fixed rules, whereas the fuzzy neural network is able to approximate more complex

relationships between the input and output variables and optimize the operations accordingly.

We also observe that the RMSE obtained with the fuzzy neural network is similar to the RMSE of

0.5499 obtained with the neural network presented in section 3.1. This shows that the ability of the

fuzzy neural network to approximate the output variable is comparable to that of the neural network

for the use case at hand. Furthermore, the fuzzy neural network is able to achieve this result while

maintaining a high degree of interpretability, as we will see in the following paragraphs.

By extracting the weights of the connections between the neurons in the fuzzy neural network, we

can interpret the relationships between the input and output variables in terms of fuzzy logic rules.

This is done by analyzing the chain of operations performed (which model logical operations) and

their corresponding weights (which model the influence of each neuron on the next). Figure 15 shows

the weights of the fuzzy neural network.

Recall that, for or-neurons, the greater the weight associated to an input, the greater the influence

of that input in the neuron (due to the ∧ operation between the input and the weight). Conversely, in

the case of and-neurons, the lower the weight associated to an input, the greater the influence of that

input in the neuron (due to the ∨ operation between the input and the weight). Therefore, in order

to extract the rules that have the greatest influence in the output of the system, we apply a threshold

to the weights in each layer. We select weigths lower than 0.1 in the first layer (matrix W(1)), weights

greater than 0.9 in the second layer (matrix W(2)), and weights greater than 10.0 in the third layer

(matrix W(3)).

It is important to note here that the weights in the third layer have been automatically optimized in

the training process to be outside the desired range of [0, 1]. After performing preliminary explorations

of this phenomenon, we believe that this inconvenience may be caused by the algorithm used for the
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W(1) =



0.61 0.38 0.64 0.47 0.71 0.62 0.44 0.1 0.61 0.06 0.57 0.53 0.39 0.91 0.53 0.71 0.71 0.21 0.31 0.98
0.01 0.47 0.46 0.85 0.45 0.63 0.48 0.22 0.22 0.26 0.05 0.18 0.62 0.83 0.52 0.27 0.72 0.31 0.39 0.23
0.34 0.04 0.71 0.69 0.6 0.75 0.71 0.52 0.55 0.54 0.77 0.84 0.86 0.79 0.38 0.48 0.4 0.79 0.56 0.96
0.75 0.07 0.65 0.98 0.94 0.49 0.67 0.03 0.34 0.74 0.04 0.94 0.17 0.66 0.48 0.59 0.55 0.03 0.39 0.18
0.93 0.44 0.0 0.62 0.72 0.28 0.45 0.72 0.19 0.24 0.45 0.15 0.81 0.54 0.8 0.77 0.11 0.19 0.16 0.34
0.32 0.42 0.02 0.71 0.78 0.66 0.82 0.88 0.01 0.58 0.96 0.14 0.28 0.47 0.19 0.41 0.43 0.95 0.47 0.77
0.87 0.72 0.07 0.87 0.83 0.14 0.32 0.84 0.01 0.06 0.16 0.66 0.3 0.05 0.69 0.75 0.69 0.07 0.99 0.46
0.02 0.42 0.83 0.73 0.49 0.85 0.04 0.85 1.0 0.2 0.61 0.42 0.08 0.5 0.33 0.07 0.14 0.51 0.96 0.68
0.17 0.84 0.54 0.01 0.52 0.82 0.21 0.48 0.25 0.11 0.22 0.55 0.82 0.41 0.05 0.5 0.07 0.53 0.87 0.71
0.19 0.39 0.7 0.64 0.03 0.21 0.32 0.68 0.95 0.72 0.69 0.08 0.82 0.68 0.34 0.26 0.64 0.23 0.7 0.88
0.17 0.19 0.29 0.07 0.44 0.81 0.69 0.34 0.44 0.28 0.1 0.36 0.53 0.25 0.13 0.65 0.57 0.34 0.64 0.96
0.53 0.16 0.96 0.86 0.45 0.27 0.29 0.94 0.76 0.24 0.52 0.6 0.63 0.47 0.24 0.48 0.36 0.33 0.25 0.26
0.26 0.7 0.08 0.02 0.93 0.68 0.78 0.72 0.31 0.19 0.16 0.47 0.62 0.03 0.12 0.78 0.56 0.83 0.95 0.8
0.39 0.28 0.64 0.91 0.02 0.63 0.11 0.1 0.68 0.75 0.67 0.65 0.35 0.51 0.06 0.17 0.51 0.39 0.42 0.78
0.69 0.39 0.34 0.14 0.76 0.15 0.66 0.41 0.89 0.18 0.17 0.56 0.51 0.28 1.0 0.07 0.77 0.74 0.38 0.68
0.42 0.12 0.83 0.37 0.43 0.99 0.98 0.13 0.37 0.78 0.81 0.13 0.14 0.71 0.16 0.86 0.12 0.21 0.69 0.77
0.32 0.21 0.69 0.66 0.63 0.04 0.35 0.32 0.51 0.95 0.14 0.49 0.69 0.78 0.0 0.52 0.89 0.17 0.81 0.43
0.95 0.07 0.59 0.86 0.86 0.25 0.09 0.51 0.26 0.82 0.24 0.55 0.06 0.5 0.94 0.77 0.71 0.21 0.93 0.25
0.96 0.09 0.25 0.35 0.58 0.77 0.61 0.31 0.1 0.35 0.26 0.2 0.81 0.57 0.23 0.74 0.16 0.21 0.45 0.83
0.76 0.16 0.15 0.67 0.46 0.55 0.51 0.14 0.42 0.34 0.41 0.81 0.03 0.55 0.99 0.05 0.68 1.0 0.78 0.77



W(2) =



0.31 0.71 0.56 0.98 0.02 0.76 0.19 0.05 0.97 0.6
0.22 0.03 0.4 0.39 0.46 0.35 0.64 0.84 0.1 0.31
0.93 0.02 0.9 0.4 0.64 0.24 0.74 0.56 0.38 0.97
0.05 0.93 0.84 0.42 0.34 0.9 0.7 0.06 0.11 0.01
0.29 0.42 0.68 0.79 0.05 0.76 0.67 0.66 0.04 0.17
0.44 0.74 0.38 0.34 0.55 0.54 0.44 0.54 0.24 0.92
0.53 0.75 0.08 0.35 0.67 0.17 0.52 0.23 0.34 0.52
0.11 0.66 0.82 0.06 0.47 0.39 0.05 0.39 0.91 0.56
0.48 0.96 0.65 0.89 0.1 0.77 0.89 0.73 0.43 0.95
0.25 0.68 0.0 0.13 0.04 0.11 0.3 0.06 0.16 0.24
0.73 0.97 0.76 0.28 0.21 0.76 0.2 0.09 0.3 0.97
0.91 0.08 0.99 0.23 0.28 0.04 0.92 0.89 0.97 0.65
0.3 0.79 0.37 0.03 0.23 0.79 0.05 0.0 0.95 0.09
0.61 0.98 0.63 0.44 0.68 0.98 0.14 0.74 0.3 0.18
0.47 0.81 0.09 0.38 0.37 0.78 0.69 0.75 0.89 0.77
0.3 0.56 0.88 0.81 0.15 0.5 0.71 0.67 0.49 0.46
0.7 0.29 0.82 0.12 0.07 0.56 0.59 0.66 0.18 0.64
0.08 0.74 0.82 0.26 0.59 0.82 0.42 0.69 0.18 0.63
0.65 0.59 0.17 0.52 0.82 0.12 0.64 0.28 0.26 0.17
0.74 0.86 0.08 0.89 0.79 0.61 0.85 0.61 0.58 0.83



, W(3) =



6.34 7.93 5.37 −6.02 6.1
1.97 1.47 6.51 4.04 −15.31

−17.55 −4.2 5.17 18.99 10.48
1.69 −1.47 −3.64 1.34 18.55
11.53 7.75 12.04 −4.57 −22.35
−8.51 −4.54 −1.01 1.39 −4.27
0.53 −6.74 −4.33 4.87 13.96
−1.41 3.65 −0.7 −4.96 29.07
3.84 20.16 23.76 15.06 −14.72
10.86 5.05 1.75 −5.84 −1.72



Figure 15: Weights of the connections between the neurons in the fuzzy neural network. The values in bold are the
ones selected after applying the threshold conditions. The notation used is the same as in equations (11) to (13). The

values are rounded to two decimal places.

optimization of the parameters, which is incompatible with constraining the values for the weights27.

A more in-depth analysis would be needed to determine exact causes and solutions, which would

involve a more detailed study of the optimization algorithm and the training process. This is outside

of the scope and objectives of this text, and is proposed as future work.

Furthermore, it is also worth noting that the weights in the last layer are the ones with the

greatest variation in the range of values. Preliminary tests have shown that the last layer is the only

one that has been optimized significantly in the training process. The change of the weights in the

previous layers has been negligible; these weights have remained very close to their initial values. This

phenomenon may be due to the fact that the model has been trained with a small dataset.

By analyzing the chain of operations performed by the model using the selected weights, we can

extract the rules that have the greatest influence in the output of the system. As an example, consider

the output neuron µ̂1, corresponding to the membership function µV LY . The neurons which have the

most influence on µ̂1, according to the threshold imposed, are z
(2)
5 and z

(2)
10 , resulting in the following

operation for µ̂1:

µ̂1 = z
(2)
5 ∨ z

(2)
10 .

27Gradient-based optimization algorithms (such as the Adam algorithm used here) are typically used for the training
of neural networks and have been used here as well. These algorithms for automatic optimization are not compatible
with constraining the values for the weights. However, there are other optimization algorithms that are compatible with
this constraint. Further discussion and suggestions will be provided in section 4.
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According to the selection of the weights in the second layer, the neuron z
(2)
5 is not significantly

influenced by any of the neurons before it, but we obtain the following operation for z
(2)
10 :

z
(2)
10 = z

(1)
3 ∨ z

(1)
6 ∨ z

(1)
9 ∨ z

(1)
11 .

In turn, the values for these neurons are computed with the following relations:

z
(1)
3 = µ5 ∧ µ6 ∧ µ7 ∧ µ13, z

(1)
6 = µ17, z

(1)
9 = µ6 ∧ µ7, z

(1)
11 = µ2 ∧ µ4.

Putting it all together and simplyfying the expressions where possible, we obtain the following relation

between µ̂1 and the input neurons:

µ̂1 = (µ5 ∧ µ6 ∧ µ7 ∧ µ13) ∨ (µ17) ∨ (µ6 ∧ µ7) ∨ (µ2 ∧ µ4)

= (µ6 ∧ µ7) ∨ (µ17) ∨ (µ2 ∧ µ4) = (µV LG ∧ µLG) ∨ (¬µLG) ∨ (µLP ∧ µHP ),

which corresponds to the following rule:

(R1) IF (P is LP AND P is HP) OR (G is VLG AND G is LG) OR (G is NOT LG) THEN (Y

is VLY).

We extract the rules for the rest of output neurons in the same way. The rest of the extracted

rules are the following:

(R2) IF (P is LP AND G is MG) OR (P is HP) OR (G is VHG) OR (G is MG AND G is NOT

MG AND G is NOT VHG) THEN (Y is LY),

(R3) IF (P is LP AND G is MG) OR (P is HP) OR (G is VHG) OR (G is MG AND G is NOT

MG AND G is NOT VHG) THEN (Y is MY),

(R4) IF (P is LP AND G is MG) OR (P is HP) OR (G is VHG) OR (G is MG AND G is NOT

MG AND G is NOT VHG) THEN (Y is HY),

(R5) IF (G is VHG) OR (P is LP AND G is MG) THEN (Y is VHY).

We observe that rules (R2)-(R4) share the same antecedent, and have different consequents. Also,

we find expressions which may appear conflicting in terms of Boolean logic (such as the expression “G

is MG AND G is NOT MG” in rules (R2)-(R4)). These may appear contradictory in the context of

classical logic. However, in the context of fuzzy logic, the fuzzy sets for each variable are not disjoint.

Therefore, these expressions are valid in the context of fuzzy logic.

It is important to note that the rules obtained are optimized in the specific context of the problem

and with the data used here. Therefore, we need to remain cautious when generalizing these rules to

other contexts or other data. Furthermore, the model is proposed here as an example to illustrate

the implementation and interpretation of fuzzy neural networks. With additional data and better

training, the model may achieve better results and yield more meaningful rules, that can be more

adequate for generalization to other data in the same context.

Overall, we have shown that fuzzy neural networks offer an enhanced interpretability, while still

maintaining an accuracy in the predicition comparable to that of classical neural networks. The

RMSE obtained with the fuzzy neural network is lower than the one obtained with the neural network

(section 3.1) and significantly lower than the one obtained with the fuzzy rule-based system (section

2.4). Table 13 summarizes the RMSE obtained with the three models28.

The most notable advantage of the model presented here is the ability of optimizing rules that can

used to explain the process used to infer the output variable. The model is able to extract rules that

are meaningful in the context of the problem at hand, and that can be used to explain the relationships

between the input and output variables. This is a significant advantage over other machine learning

models, such as neural networks, which are not able to provide this level of interpretability. Further-

28Note that the RMSE is a measure of the error of the result in the prediction task. Therefore, it is used as a measure
of the accuracy of the model in the sense that, the lower the RMSE, the higher the accuracy of the model.
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more, this interpretability does not necessarily come at the expense of accuracy in the prediction task.

The model is able to generate interpretable results, while still maintaining an adequate accuracy in

the predicion, comparable to that of the classical approaches.

The fuzzy neural network presented here has been implemented and trained using the PyTorch

library [90] in the Python 3 programming language. The code for the implementation, training and

testing of the fuzzy neural network is available in the Github repository found online at: https:

//github.com/loredanasandu/tfg-fuzzy-logic-artificial-intelligence. An extract with the most relevant

parts of the code is included in Appendix A, section A.4.

Model Dual pair RMSE

Fuzzy neural network ⟨tπ , sπ⟩ 0.53715

Neural network - 0.5499

Fuzzy rule-based system ⟨tmin, smax⟩ 0.8595

Fuzzy rule-based system ⟨tπ , sπ⟩ 0.8606

Fuzzy rule-based system ⟨t L, s L⟩ 0.8676

Table 13: RMSE obtained with the different systems presented for the prediction of crop yields.
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4 Discussion and suggestions for future work

In this text, we have presented different approaches for the integration of fuzzy logic in AI systems,

and have shown how this integration can enhance the interpretability of these systems.

We have described how fuzzy logic can be applied to the implementation of fuzzy rule-based

systems, which make predictions based on a predefined set of rules. These systems can be advanced

through the definition of additional fuzzy sets for each variable and the adjustment of the rules. This

would improve the accuracy, while maintaining the interpretability demonstrated here.

We have presented fuzzy neural networks as a model that combines the advantages of fuzzy logic

and classical neural networks. The accuracy achieved by fuzzy neural networks is comparable to that

of classical neural networks, due to the optimization of the parameters in the model. Furthermore,

the process used to infer the output variable can be explained in terms of rules extracted from the

model. This is a significant advantage over classical neural networks in terms of interpretability.

Let us now discuss some observations made during the study, and provide suggestions for future

research. First, we have observed that the choice of t-norms and t-conorms can affect the performance

of fuzzy neural networks significantly, sometimes even preventing the model from training. Preliminary

explorations of this phenomenon have shown that this may be due to the nature of the t-norms and

t-conorms in relation to the input data. For instance, the dual pair ⟨tπ, sπ⟩ is not compatible with

input membership values that are close to 0. In this case, the composition of t-norms and t-conorms

in the network approaches rapidly the value 0, which ultimately becomes the output of the network.

Similar observations have been made for the other dual pairs (see footnote 26). Further investiga-

tion of this matter, namely the convergence and divergence of different t-norms and t-conorms, would

enable significant improvement of the models presented here. In addition, alternative operators could

also be explored. As a starting point, we suggest the use of annihilators, through the partial soft

conjunction, as done in [94]. Further discussion can be found in [95].

Second, it has been shown that some of the parameters in the fuzzy neural network are optimized

outside the desired range of [0, 1]. This may be due to the gradient-based optimization algorithms used

for training the model, which are not compatible with constraining the values for the weights. Different

algorithms for the optimization of neural networks with constrained weights have been explored in the

literature [96–98]. Future research is suggested to explore the use of these algorithms to train fuzzy

neural networks. New algorithms specifically designed for this purpose could also be developed.

Third, it has been observed that the last layer of the fuzzy neural network is the only one which has

been significantly optimized. This is a commmon phenomenon occurring in the training of classical

neural networks. It is often due to the lack of enough data for the training process (in addition to

other factors, such as the choice and adjustment of the optimization algorithm). Different solutions

to this issue (other than the use of more data, which is sometimes not the most feasible solution) have

been explored in the literature [99–102]. Future work may be done to adapt these approaches to fuzzy

neural networks.

Last, here we have studied the integration of fuzzy logic operators specifically with feed-forward

neural networks (see footnote 15). There are ample possibilities for research on the integration of fuzzy

logic with other types of neural networks and deep learning models. Some research has already been

done regarding some of these models (see section 1.1 for details), but there is still limited literature

regarding the integration of fuzzy logic with the most recent models, such as Transformers and diffusion

models. Furthermore, this combination could be explored considering other machine learning models,

not necessarily limited to deep learning and neural networks.

In conclusion, we have shown that the integration of fuzzy logic with AI systems can enhance the

interpretability of these systems, while still maintaining an accuracy in the prediction comparable to

that of classical approaches. The foundations and applications presented here can serve as a starting

point for further research in this area, in many different directions.
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[16] Bĕlohlávek, R., Dauben, J. W., & Klir, G. J. (2017). Fuzzy Logic and Mathematics: A Historical

Perspective. Oxford University Press.

[17] McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by

machine, Part I. Communications of the ACM, 3 (4), 184–195.

[18] Minsky, M. (1961). Steps toward Artificial Intelligence. Proceedings of the IRE, 49 (1), 8–30.

[19] Newell, A., Shaw, J., & Simon, H. (1959). Report on a general problem-solving program.

Proceedings of the International Conference on Information Processing, 256–264.

[20] Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management

Science, 17 (4), B141–B164.

[21] Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-based Expert System – The MYCIN Experi-

ments of the Stanford Heuristic Programming Project. Addison-Wesley.

32



[22] Waterman, D. A. (1986). A Guide to Expert Systems. Addison-Wesley.

[23] Zadeh, L. A. (1973). Outline of a New Approach to the Analysis of Complex Systems and

Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3 (1), 28–44.

[24] Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in expert systems.

Fuzzy Sets and Systems, 11 (1), 199–227.

[25] Adlassnig, K.-P., & Kolarz, G. (1982). CADIAG-2: Computer-assisted medical diagnosis using

fuzzy subsets. Approximate Reasoning in Decision Analysis, 219–247.

[26] Hudson, D. L., & Cohen, M. E. (1987). Fuzzy logic in medical expert systems. 26th IEEE

Conference on Decision and Control, 26, 337–342.

[27] Kacprzyk, J., & Yager, R. R. (1985). Emergency-Oriented expert systems: A fuzzy approach.

Information Sciences, 37 (1), 143–155.

[28] Lea, R. N. (1987). Fuzzy Sets And Autonomous Navigation. Applications of Artificial Intelli-

gence V, 0786, 448–452.

[29] Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science.

[30] Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmillan.

[31] Gupta, M. M., & Rao, D. H. (1994). On the principles of fuzzy neural networks. Fuzzy Sets

and Systems, 61 (1), 1–18.

[32] Jang, J.-S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transac-

tions on Systems, Man, and Cybernetics, 23 (3), 665–685.

[33] Sun, C.-T., & Jang, J.-S. (1993). A neuro-fuzzy classifier and its applications. Second IEEE

International Conference on Fuzzy Systems, 94–98 vol.1.

[34] Shann, J. J., & Fu, H. C. (1995). A fuzzy neural network for rule acquiring on fuzzy control

systems. Fuzzy Sets and Systems, 71 (3), 345–357.

[35] Watanabe, K., Tang, J., Nakamura, M., et al. (1996). A fuzzy-Gaussian neural network and its

application to mobile robot control. IEEE Transactions on Control Systems Technology, 4 (2),

193–199.

[36] Buckley, J. J., & Hayashi, Y. (1994). Fuzzy neural networks: A survey. Fuzzy Sets and Systems,

66 (1), 1–13.

[37] Chun, M.-G., Kwak, K.-C., & Ryu, J.-W. (1999). Application of ANFIS for coagulant dosing

process in a water purification plant. IEEE International Fuzzy Systems, 3, 1743–1748.

[38] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[39] Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press.

[40] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.

[41] Devlin, J., Chang, M.-W., Lee, K., et al. (2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. arXiv [preprint].

[42] Radford, A., Narasimhan, K., Salimans, T., et al. (2018). Improving Language Understanding

by Generative Pre-Training. OpenAI [preprint].

[43] Hinton, G., Deng, L., Yu, D., et al. (2012). Deep Neural Networks for Acoustic Modeling

in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing

Magazine, 29 (6), 82–97.

[44] Kirillov, A., Mintun, E., Ravi, N., et al. (2023). Segment Anything. arXiv [preprint].

[45] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep con-

volutional neural networks. Proceedings of the 25th International Conference on Neural Infor-

mation Processing Systems - Volume 1, 1097–1105.

[46] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep rein-

forcement learning. Nature, 518 (7540), 529–533.

33



[47] Levine, S., Pastor, P., Krizhevsky, A., et al. (2016). Learning Hand-Eye Coordination for

Robotic Grasping with Deep Learning and Large-Scale Data Collection. arXiv [preprint].

[48] Ma, J., Sheridan, R. P., Liaw, A., et al. (2015). Deep neural nets as a method for quantitative

structure-activity relationships. Journal of Chemical Information and Modeling, 55 (2), 263–

274.

[49] Angermueller, C., Pärnamaa, T., Parts, L., et al. (2016). Deep learning for computational

biology. Molecular Systems Biology, 12 (7), 878.

[50] Pimentel, M. A. F., Clifton, D. A., Clifton, L., et al. (2014). A review of novelty detection.

Signal Processing, 99, 215–249.

[51] Klir, G. J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Pearson.

[52] Guidotti, R., Monreale, A., Ruggieri, S., et al. (2018). A Survey of Methods for Explaining

Black Box Models. ACM Computing Surveys, 51 (5), 93:1–93:42.

[53] Lin, C.-T., & Lee, C. (1991). Neural-network-based fuzzy logic control and decision system.

IEEE Transactions on Computers, 40 (12), 1320–1336.

[54] Cpa lka, K. (2017). Design of Interpretable Fuzzy Systems. Springer International.

[55] Singh, B., Doborjeh, M., Doborjeh, Z., et al. (2023). Constrained neuro fuzzy inference method-

ology for explainable personalised modelling with applications on gene expression data. Scien-

tific Reports, 13 (1), 456.

[56] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., et al. (2017). Building machines that learn and

think like people. The Behavioral and Brain Sciences, 40.

[57] Zhang, C., Bengio, S., Hardt, M., et al. (2017). Understanding deep learning requires rethinking

generalization. arXiv [preprint].

[58] Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems,

4 (2), 103–111.

[59] de Campos Souza, P. V. (2020). Fuzzy neural networks and neuro-fuzzy networks: A review the

main techniques and applications used in the literature. Applied Soft Computing, 92, 106275.

[60] Popko, E. A., & Weinstein, I. A. (2016). Fuzzy Logic Module of Convolutional Neural Network

for Handwritten Digits Recognition. Journal of Physics: Conference Series, 738 (1), 012123.

[61] Xi, Z., & Panoutsos, G. (2018). Interpretable Machine Learning: Convolutional Neural Net-

works with RBF Fuzzy Logic Classification Rules. International Conference on Intelligent Sys-

tems, 448–454.

[62] Kolman, E., & Margaliot, M. (2009). Extracting symbolic knowledge from recurrent neural

networks—A fuzzy logic approach. Fuzzy Sets and Systems, 160 (2), 145–161.

[63] Subathra, B., & Radhakrishnan, T. K. (2012). Recurrent Neuro Fuzzy and Fuzzy Neural Hybrid

Networks: A Review. Instrumentation Science & Technology, 40 (1), 29–50.

[64] Al-Hmouz, R., Pedrycz, W., Balamash, A., et al. (2019). Logic-driven autoencoders. Knowledge-

Based Systems, 183, 104874.

[65] Chauhan, N., & Choi, B.-J. (2019). Denoising Approaches Using Fuzzy Logic and Convolu-

tional Autoencoders for Human Brain MRI Image. International Journal of Fuzzy Logic and

Intelligent Systems, 19 (3), 135–139.

[66] Nguyen, R., Singh, S. K., & Rai, R. (2023). FuzzyGAN: Fuzzy generative adversarial networks

for regression tasks. Neurocomputing, 525, 88–110.

[67] Berenji, H. R. (1992). A reinforcement learning—based architecture for fuzzy logic control.

International Journal of Approximate Reasoning, 6 (2), 267–292.

[68] He, C., Liu, S., & Han, S. (2020). A Fuzzy Logic Reinforcement Learning-Based Routing

Algorithm For Flying Ad Hoc Networks. International Conference on Computing, Networking

and Communications (ICNC), 987–991.

34



[69] Yung, N. H. C., & Ye, C. (1999). An intelligent mobile vehicle navigator based on fuzzy logic

and reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 29 (2), 314–321.

[70] Omisore, M. O., Samuel, O. W., & Atajeromavwo, E. J. (2017). A Genetic-Neuro-Fuzzy in-

ferential model for diagnosis of tuberculosis. Applied Computing and Informatics, 13 (1), 27–

37.

[71] Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., et al. (2020). Hybrid genetic algorithm and

a fuzzy logic classifier for heart disease diagnosis. Evolutionary Intelligence, 13 (2), 185–196.

[72] Chimatapu, R., Hagras, H., Starkey, A., et al. (2018). Explainable AI and Fuzzy Logic Systems.

Theory and Practice of Natural Computing, 3–20.

[73] Freitas, A. A. (2014). Comprehensible classification models: A position paper. ACM SIGKDD

Explorations Newsletter, 15 (1), 1–10.

[74] Arrieta, A. B., Dı́az-Rodŕıguez, N., Del Ser, J., et al. (2019). Explainable Artificial Intelligence

(XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. arXiv

[preprint].

[75] Lipton, Z. C. (2017). The Mythos of Model Interpretability. arXiv [preprint].

[76] Zadeh, L. A. (1965b). Fuzzy Sets and Systems. Proceedings of the Symposium on System Theory,

15.

[77] Goodstein, R. L. (1963). Boolean algebra. Pergamon, Macmillan.

[78] Stoll, R. R. (1979). Set Theory and Logic. Dover Publications.

[79] Phuong, N. H., & Kreinovich, V. (2001). Fuzzy logic and its applications in medicine. Interna-

tional Journal of Medical Informatics, 62 (2), 165–173.

[80] Smithson, M. J., & Verkuilen, J. (2006). Fuzzy Set Theory: Applications in the Social Sciences.

SAGE Publications.

[81] Zimmermann, H.-J. (2001). Fuzzy Set Theory And Its Applications, 4Th Edition. Springer.

[82] Zimmermann, H.-J. (2010). Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational

Statistics, 2 (3), 317–332.
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A Code for the implementations of the systems

This appendix includes extracts of the code written in Python for the implementations of the models

presented in this text. The code shown here includes the relevant parts for the implementation of the

systems. The full code, with outputs, figures and evaluations (including the code to produce the figures

and the evaluations), is available in the form of Jupyter Notebooks and Python script files in the Github

repository found online at: https://github.com/loredanasandu/tfg-fuzzy-logic-artificial-intelligence.

A.1 Data processing

import pandas as pd

# Read the raw data from the csv file

df = pd.read_csv(’data/rice -yield -raw -data.csv’, header =1)

# Select the features of interest and rename them

df_clean = df[[’Ecotype ’, ’Panicle number (million/ha)’, ’Growth period (d)’,

’Yield (t/ha)’]]. copy()

df_clean.rename(columns ={’Yield (t/ha)’: ’yield’, ’Growth period (d)’: ’growth ’,

’Panicle number (million/ha)’: ’panicle ’}, inplace=True)

# Remove rows with missing values

df_clean.dropna(axis=0, inplace=True)

# Select the rows corresponding to the Japonica inbred type of rice plant , and remove

# the ’Ecotype ’ column (no longer needed)

df_clean = df_clean[df_clean[’Ecotype ’] == ’Japonica inbred ’]

df_clean.drop(columns=df_clean.columns [0], inplace=True)

# Remove the rows with outliers

# Remove values lower than or equal to the 0.01 percentile

df_clean = df_clean[df_clean[’yield ’] > df_clean[’yield’]. quantile (0.01)]

df_clean = df_clean[df_clean[’growth ’] > df_clean[’growth ’]. quantile (0.01)]

df_clean = df_clean[df_clean[’panicle ’] > df_clean[’panicle ’]. quantile (0.01)]

# Remove values higher than or equal to the 0.99 percentile

df_clean = df_clean[df_clean[’yield ’] < df_clean[’yield’]. quantile (0.99)]

df_clean = df_clean[df_clean[’growth ’] < df_clean[’growth ’]. quantile (0.99)]

df_clean = df_clean[df_clean[’panicle ’] < df_clean[’panicle ’]. quantile (0.99)]

# Save the processed data to a new csv file

df_clean.to_csv(’data/rice -yield -clean -data.csv’, index=False)

A.2 Fuzzy rule-based system

Definition of generic membership functions

def triangular_membership_function(x:float , a:float , b:float , c:float) -> float:

"""

Triangular membership function.

Args:

x (float ): input value

a (float ): leftmost point of the triangle

b (float ): middle point of the triangle

c (float ): rightmost point of the triangle
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Returns:

float: membership value between 0 and 1

"""

try:

if x < a:

return 0

elif a <= x <= b:

return (x - a) / (b - a)

elif b <= x <= c:

return (c - x) / (c - b)

else:

return 0

except ZeroDivisionError:

return 0

def left_trapezoidal_membership_function(x:float , a:float , b:float) -> float:

"""

Left trapezoidal membership function.

Args:

x (float ): input value

a (float ): leftmost point of the trapezoid

b (float ): rightmost point of the trapezoid

Returns:

float: membership value between 0 and 1

"""

try:

if x <= a:

return 1

elif a <= x <= b:

return (b - x) / (b - a)

else:

return 0

except ZeroDivisionError:

return 0

def right_trapezoidal_membership_function(x:float , a:float , b:float) -> float:

"""

Right trapezoidal membership function.

Args:

x (float ): input value

a (float ): leftmost point of the trapezoid

b (float ): rightmost point of the trapezoid

Returns:

float: membership value between 0 and 1

"""

try:

if x <= a:

return 0

elif a <= x <= b:

return (x - a) / (b - a)

else:

return 1

except ZeroDivisionError:

return 0
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Definition of t-norms and t-conorms

import numpy as np

# --- T-norms ---

def t_norm_min(x: float , y: float) -> float:

"""

Minimum t-norm.

Defined as the minimum of x and y.

Args:

x (float ): first value , membership value between 0 and 1

y (float ): second value , membership value between 0 and 1

Returns:

float: minimum of x and y, membership value between 0 and 1

"""

return np.min([x, y], axis =0)

def t_norm_product(x: float , y: float) -> float:

"""

Product t-norm.

Defined as the product of x and y.

Args:

x (float ): first value , membership value between 0 and 1

y (float ): second value , membership value between 0 and 1

Returns:

float: product of x and y, membership value between 0 and 1

"""

return x * y

def t_norm_lukasiewicz(x: float , y: float) -> float:

"""

Lukasiewicz t-norm.

Defined as the maximum of 0 and x + y - 1.

Args:

x (float ): first value , membership value between 0 and 1

y (float ): second value , membership value between 0 and 1

Returns:

float: maximum of 1 and x + y, membership value between 0 and 1

"""

return np.max([np.zeros(x.shape), x + y - 1], axis =0)

# --- T-conorms ---

def t_conorm_max(x: float , y: float) -> float:

"""

Maximum t-conorm.

Defined as the maximum of x and y.

Args:

x (float ): first value , membership value between 0 and 1

y (float ): second value , membership value between 0 and 1

Returns:

float: maximum of x and y, membership value between 0 and 1

"""

return np.max([x, y], axis =0)
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def t_conorm_sum(x: float , y: float) -> float:

"""

Sum t-conorm.

Defined as x + y - x * y.

Args:

x (float ): first value , membership value between 0 and 1

y (float ): second value , membership value between 0 and 1

Returns:

float: sum of x and y, membership value between 0 and 1

"""

return x + y - x * y

def t_conorm_lukasiewicz( x: float , y: float) -> float:

"""

Lukasiewicz t-conorm.

Defined as the minimum of 1 and x + y.

Args:

x (float ): first value , membership value between 0 and 1

y (float ): second value , membership value between 0 and 1

Returns:

float: minimum of 1 and x + y, membership value between 0 and 1

"""

return np.min([np.ones(x.shape), x + y], axis =0)

Definition of the fuzzy rule-based system

import numpy as np

import pandas as pd

class YieldPredictionSystem ():

""" Fuzzy rule -based system for rice yield prediction."""

def __init__(self ,

data: pd.DataFrame , # columns: panicle , growth , yield

t_norm: str = ’min’,

t_conorm: str = ’max’) -> None:

"""

Initialize the yield prediction system.

Args:

data (pd.DataFrame ): data to be used for training and testing the system

t_norm (str , optional ): t-norm to be used for evaluating rules.

Defaults to ’min ’.

t_conorm (str , optional ): t-conorm to be used for evaluating rules.

Defaults to ’max ’.

"""

# Check t-norm and t-conorm

assert t_norm in [’min’, ’product ’, ’lukasiewicz ’]

assert t_conorm in [’max’, ’sum’, ’lukasiewicz ’]

# Check data

assert ’panicle ’ in data.columns and data[’panicle ’].dtype == ’float64 ’

assert ’growth ’ in data.columns and data[’growth ’].dtype == ’float64 ’

assert ’yield ’ in data.columns and data[’yield’].dtype == ’float64 ’

assert data.columns.size == 3

# Save percentiles for panicle , growth and yield

self.panicle_datapoints = {

’min’: data[’panicle ’].min(),

40



’pct10’: data[’panicle ’]. quantile (0.1),

’pct25’: data[’panicle ’]. quantile (0.25) ,

’pct50’: data[’panicle ’]. quantile (0.5),

’pct75’: data[’panicle ’]. quantile (0.75) ,

’pct90’: data[’panicle ’]. quantile (0.9),

’max’: data[’panicle ’].max()

}

self.growth_datapoints = {

’min’: data[’growth ’].min(),

’pct10’: data[’growth ’]. quantile (0.1),

’pct25’: data[’growth ’]. quantile (0.25) ,

’pct50’: data[’growth ’]. quantile (0.5),

’pct75’: data[’growth ’]. quantile (0.75) ,

’pct90’: data[’growth ’]. quantile (0.9),

’max’: data[’growth ’].max()

}

self.yield_datapoints = {

’min’: data[’yield’].min(),

’pct10’: data[’yield ’]. quantile (0.1) ,

’pct25’: data[’yield ’]. quantile (0.25) ,

’pct50’: data[’yield ’]. quantile (0.5) ,

’pct75’: data[’yield ’]. quantile (0.75) ,

’pct90’: data[’yield ’]. quantile (0.9) ,

’max’: data[’yield’].max(),

}

# Set t-norm and t-conorm functions

if t_norm == ’min’:

self.t_norm = t_norm_min

elif t_norm == ’product ’:

self.t_norm = t_norm_product

elif t_norm == ’lukasiewicz ’:

self.t_norm = t_norm_lukasiewicz

if t_conorm == ’max’:

self.t_conorm = t_conorm_max

elif t_conorm == ’sum’:

self.t_conorm = t_conorm_sum

elif t_conorm == ’lukasiewicz ’:

self.t_conorm = t_conorm_lukasiewicz

# Initialize the data and membership functions

self.data = data

self.set_membership_functions ()

self.rules = None

# --- Membership functions ---

def set_membership_functions(self) -> None:

"""

Set membership functions for panicle , growth and yield. We use the 10th, 25th ,

50th, 75th and 90th percentiles to define the piecewise membership functions.

"""

# Membership functions for panicle

self.mu_VLP = lambda x: left_trapezoidal_membership_function(

x, a=self.panicle_datapoints[’pct10’], b=self.panicle_datapoints[’pct25’])

self.mu_LP = lambda x: triangular_membership_function(

x, a=self.panicle_datapoints[’pct10’], b=self.panicle_datapoints[’pct25’],

c=self.panicle_datapoints[’pct50 ’])

self.mu_MP = lambda x: triangular_membership_function(

x, a=self.panicle_datapoints[’pct25’], b=self.panicle_datapoints[’pct50’],

c=self.panicle_datapoints[’pct75 ’])

self.mu_HP = lambda x: triangular_membership_function(

x, a=self.panicle_datapoints[’pct50’], b=self.panicle_datapoints[’pct75’],

c=self.panicle_datapoints[’pct90 ’])

self.mu_VHP = lambda x: right_trapezoidal_membership_function(
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x, a=self.panicle_datapoints[’pct75’], b=self.panicle_datapoints[’pct90’])

# Membership functions for growth

self.mu_VLG = lambda x: left_trapezoidal_membership_function(

x, a=self.growth_datapoints[’pct10’], b=self.growth_datapoints[’pct25 ’])

self.mu_LG = lambda x: triangular_membership_function(

x, a=self.growth_datapoints[’pct10’], b=self.growth_datapoints[’pct25 ’],

c=self.growth_datapoints[’pct50’])

self.mu_MG = lambda x: triangular_membership_function(

x, a=self.growth_datapoints[’pct25’], b=self.growth_datapoints[’pct50 ’],

c=self.growth_datapoints[’pct75’])

self.mu_HG = lambda x: triangular_membership_function(

x, a=self.growth_datapoints[’pct50’], b=self.growth_datapoints[’pct75 ’],

c=self.growth_datapoints[’pct90’])

self.mu_VHG = lambda x: right_trapezoidal_membership_function(

x, a=self.growth_datapoints[’pct75’], b=self.growth_datapoints[’pct90 ’])

# Membership functions for yield

self.mu_VLY = lambda x: left_trapezoidal_membership_function(

x, a=self.yield_datapoints[’pct10 ’], b=self.yield_datapoints[’pct25’])

self.mu_LY = lambda x: triangular_membership_function(

x, a=self.yield_datapoints[’pct10 ’], b=self.yield_datapoints[’pct25’],

c=self.yield_datapoints[’pct50’])

self.mu_MY = lambda x: triangular_membership_function(

x, a=self.yield_datapoints[’pct25 ’], b=self.yield_datapoints[’pct50’],

c=self.yield_datapoints[’pct75’])

self.mu_HY = lambda x: triangular_membership_function(

x, a=self.yield_datapoints[’pct50 ’], b=self.yield_datapoints[’pct75’],

c=self.yield_datapoints[’pct90’])

self.mu_VHY = lambda x: right_trapezoidal_membership_function(

x, a=self.yield_datapoints[’pct75 ’], b=self.yield_datapoints[’pct90’])

# --- Fuzzify input ---

def fuzzify_input(self) -> None:

"""

Fuzzify panicle and growth.

"""

# Fuzzify panicle

self.data[’VLP’] = self.data[’panicle ’]. apply(self.mu_VLP)

self.data[’LP’] = self.data[’panicle ’].apply(self.mu_LP)

self.data[’MP’] = self.data[’panicle ’].apply(self.mu_MP)

self.data[’HP’] = self.data[’panicle ’].apply(self.mu_HP)

self.data[’VHP’] = self.data[’panicle ’]. apply(self.mu_VHP)

# Fuzzify growth

self.data[’VLG’] = self.data[’growth ’].apply(self.mu_VLG)

self.data[’LG’] = self.data[’growth ’].apply(self.mu_LG)

self.data[’MG’] = self.data[’growth ’].apply(self.mu_MG)

self.data[’HG’] = self.data[’growth ’].apply(self.mu_HG)

self.data[’VHG’] = self.data[’growth ’].apply(self.mu_VHG)

# --- Evaluate rules ---

def evaluate_rules(self , rules: list , data: pd.DataFrame) -> None:

"""

Evaluate two -to-one rules. Rules are given by tuples of the form

(operator , panicle_fuzzy_set , growth_fuzzy_set , yield_fuzzy_set)

and they are expressions of the form:

IF panicle is <panicle_fuzzy_set > <operator > growth is <growth_fuzzy_set >

THEN yield is <yield_fuzzy_set >

Example: (’AND ’, "LP", "LG", "LY") means:

IF panicle is LP AND growth is LG THEN yield is LY

Args:
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rules (list): list of rules in the form of tuples (operator , panicle_fuzzy_set ,

growth_fuzzy_set , yield_fuzzy_set)

data (pd.DataFrame ): data to be used for evaluating the rules

Raises:

ValueError: if the operator is not ’AND’ or ’OR’

"""

# Initialize the aggregated membership values for yield categories

data[’pred_VLY ’] = 0.0

data[’pred_LY ’] = 0.0

data[’pred_MY ’] = 0.0

data[’pred_HY ’] = 0.0

data[’pred_VHY ’] = 0.0

# Evaluate each rule

for rule in rules:

# Get rule parameters

operator = rule [0]

panicle_fuzzy_set , growth_fuzzy_set , yield_fuzzy_set = rule[1], rule[2], rule [3]

# Evaluate rule

if operator == ’AND’:

yield_membership = self.t_norm(

data[panicle_fuzzy_set], data[growth_fuzzy_set ])

data[’pred_’ + yield_fuzzy_set] = self.t_conorm(

data[’pred_’ + yield_fuzzy_set], yield_membership)

elif operator == ’OR’:

yield_membership = self.t_conorm(

data[panicle_fuzzy_set], data[growth_fuzzy_set ])

data[’pred_’ + yield_fuzzy_set] = self.t_conorm(

data[’pred_’ + yield_fuzzy_set], yield_membership)

else:

raise ValueError(’Invalid operator ’)

# --- Defuzzify yield ---

def defuzzify_yield(self) -> None:

"""

Defuzzify yield using the centroid method.

"""

x = np.linspace(self.yield_datapoints[’min’], self.yield_datapoints[’max’], 1000)

y_VLY = self.data[’pred_VLY ’].apply(

lambda pred: [self.mu_VLY(x_i) if self.mu_VLY(x_i) < pred else pred for x_i in x])

y_LY = self.data[’pred_LY ’].apply(

lambda pred: [self.mu_LY(x_i) if self.mu_LY(x_i) < pred else pred for x_i in x])

y_MY = self.data[’pred_MY ’].apply(

lambda pred: [self.mu_MY(x_i) if self.mu_MY(x_i) < pred else pred for x_i in x])

y_HY = self.data[’pred_HY ’].apply(

lambda pred: [self.mu_HY(x_i) if self.mu_HY(x_i) < pred else pred for x_i in x])

y_VHY = self.data[’pred_VHY ’].apply(

lambda pred: [self.mu_VHY(x_i) if self.mu_VHY(x_i) < pred else pred for x_i in x])

# For each x_i save the largest y_i

y = np.array ([np.array([np.max([ y_VLY[j][i], y_LY[j][i], y_MY[j][i], y_HY[j][i],

y_VHY[j][i]]) for i in range(len(x))]) for j in range(len(self.data ))])

# Calculate the centroid

self.data[’predicted_crisp_yield ’] = np.sum(x * y, axis =1) / np.sum(y, axis =1)
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Main code for testing the system

See the Github repository specified above for a Jupyter notebook with output tables and figures. We

include here the most relevant main code for testing the system, which builds on the code shown

above.

import pandas as pd

import numpy as np

# Load the data

df_system = pd.read_csv(’data/rice -yield -clean -data.csv’)

# Initialize the fuzzy system.

# The t-norm and t-conorm can be chosen among (’min ’, ’max ’), (’product ’, ’sum ’)

# and (’lukasiewicz ’, ’lukasiewicz ’).

fuzzy_system = YieldPredictionSystem(data=df_system , t_norm=’product ’, t_conorm=’sum’)

# Fuzzify the input data

fuzzy_system.fuzzify_input ()

# Evaluate rules

fuzzy_system.rules = [

[’AND’, ’VLP’, ’VLG’, ’VLY’],

[’AND’, ’VLP’, ’LG’, ’LY’],

[’AND’, ’VLP’, ’MG’, ’LY’],

[’AND’, ’VLP’, ’HG’, ’MY’],

[’AND’, ’VLP’, ’VHG’, ’MY’],

[’AND’, ’LP’, ’VLG’, ’VLY’],

[’AND’, ’LP’, ’LG’, ’LY’],

[’AND’, ’LP’, ’MG’, ’LY’],

[’AND’, ’LP’, ’HG’, ’MY’],

[’AND’, ’LP’, ’VHG’, ’MY’],

[’AND’, ’MP’, ’VLG’, ’LY’],

[’AND’, ’MP’, ’LG’, ’MY’],

[’AND’, ’MP’, ’MG’, ’MY’],

[’AND’, ’MP’, ’HG’, ’HY’],

[’AND’, ’MP’, ’VHG’, ’HY’],

[’AND’, ’HP’, ’VLG’, ’LY’],

[’AND’, ’HP’, ’LG’, ’MY’],

[’AND’, ’HP’, ’MG’, ’MY’],

[’AND’, ’HP’, ’HG’, ’HY’],

[’AND’, ’HP’, ’VHG’, ’HY’],

[’AND’, ’VHP’, ’VLG’, ’MY’],

[’AND’, ’VHP’, ’LG’, ’MY’],

[’AND’, ’VHP’, ’MG’,’HY’],

[’AND’, ’VHP’, ’HG’, ’VHY’],

[’AND’, ’VHP’, ’VHG’, ’VHY’],

]

fuzzy_system.evaluate_rules(fuzzy_system.rules , fuzzy_system.data)

# Defuzzify yield

fuzzy_system.defuzzify_yield ()

# Calculate RMSE of the predicted crisp yield

RMSE_predicted_vs_real = np.sqrt(np.mean(( fuzzy_system.data[’yield’] - \

fuzzy_system.data[’predicted_crisp_yield ’])**2))
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A.3 Neural network

import pandas as pd

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

import copy

# Load the data

df_nn = pd.read_csv(’data/rice -yield -clean -data.csv’)

# Fix the random seed (this is to ensure the results can be reproduced)

np.random.seed (2)

torch.manual_seed (2)

# Define the model

model = nn.Sequential(

# Layer 1

nn.Linear(2, 8),

nn.ReLU(),

# Layer 2

nn.Linear(8, 4),

nn.ReLU(),

# Output layer

nn.Linear(4, 1),

nn.ReLU(),

)

# Define the loss function (Mean Squared Error) and the optimizer (Adam)

loss_function = nn.MSELoss ()

optimizer = optim.Adam(model.parameters (), lr =0.001)

# Define input and output variables

X = df_nn[[’panicle ’, ’growth ’]]. values

y = df_nn[’yield ’]. values

y = y.reshape(y.shape [0],1)

# Scale the input data

X = (X - X.mean(axis =0)) / X.std(axis =0)

# Train -test split (80% training , 20% testing)

X_train , X_test = np.split(X, [int (.8 *len(X))])

y_train , y_test = np.split(y, [int (.8 *len(y))])

# Convert the data from numpy arrays to PyTorch tensors

X_train = torch.FloatTensor(X_train)

X_test = torch.FloatTensor(X_test)

y_train = torch.FloatTensor(y_train)

y_test = torch.FloatTensor(y_test)

# Save the best model for later analysis

best_mse = np.inf # initialize to infinity

best_weights = None

# Save the losses for later visualization

test_losses = []

train_losses = []

# Train and test the model

n_epochs = 100 # number of epochs

for epoch in range(n_epochs ):
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model.train ()

epoch_train_losses = []

# Training loop

for i in range(len(X_train )):

# take a sample

X_sample = X_train[i]

y_sample = y_train[i]

# Forward pass

y_pred = model(X_sample)

loss = loss_function(y_pred , y_sample)

# Backward pass

optimizer.zero_grad ()

loss.backward ()

# Update weights

optimizer.step()

# Save loss for later visualization

epoch_train_losses.append(float(loss))

# Testing

model.eval()

y_pred = model(X_test)

test_loss = float(loss_function(y_pred , y_test ))

# Save losses and best model for later analysis

mean_train_loss = np.mean(epoch_train_losses)

train_losses.append(mean_train_loss)

test_losses.append(test_loss)

if test_loss < best_mse:

best_mse = test_loss

best_weights = copy.deepcopy(model.state_dict ())

last_mse = test_loss

last_weights = copy.deepcopy(model.state_dict ())

print(’Epoch %d/%d’ % \ (epoch+1, n_epochs ))

print(f"Train loss: {mean_train_loss :.6f}")

print(f"Test loss: {test_loss :.6f}")

Now we can plot the losses achieved in each iteration of the training system (variables train losses

and test losses). We can also use either the best model (variable best weights) or the model

optimized in the last epoch (variable last weights) to predict the yield. The weights of the model

can be loaded with model.load state dict(weights), where weights is the variable containing the

desired weights. See the Github repository specified above for the full code.

A.4 Fuzzy neural network

Loading and fuzzifying the data

import pandas as pd

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

import copy
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# The t-norm and t-conorm can be chosen among (’min ’, ’max ’), (’product ’, ’sum ’),

# (’lukasiewicz ’, ’lukasiewicz ’)

T_NORM = ’product ’

T_CONORM = ’sum’

# Load the data

df_fnn = pd.read_csv(’data/rice -yield -clean -data.csv’)

# We will use the YieldPredictionSystem class to fuzzify the input and defuzzify the output

fuzzy_system_fnn = YieldPredictionSystem(data=df_fnn , t_norm=T_NORM , t_conorm=T_CONORM)

# Fuzzify the input

fuzzy_system_fnn.fuzzify_input ()

# Fuzzify the output data

fuzzy_system_fnn.data[’real_VLY ’] = fuzzy_system_fnn.data[’yield’]. apply(fuzzy_system_fnn.mu_VLY)

fuzzy_system_fnn.data[’real_LY ’] = fuzzy_system_fnn.data[’yield’].apply(fuzzy_system_fnn.mu_LY)

fuzzy_system_fnn.data[’real_MY ’] = fuzzy_system_fnn.data[’yield’].apply(fuzzy_system_fnn.mu_MY)

fuzzy_system_fnn.data[’real_HY ’] = fuzzy_system_fnn.data[’yield’].apply(fuzzy_system_fnn.mu_HY)

fuzzy_system_fnn.data[’real_VHY ’] = fuzzy_system_fnn.data[’yield’]. apply(fuzzy_system_fnn.mu_VHY)

# Include negations of the fuzzy sets

not_mu = lambda x: 1 - x

fuzzy_system_fnn.data[’not_VLP ’] = fuzzy_system_fnn.data[’VLP’].apply(not_mu)

fuzzy_system_fnn.data[’not_LP ’] = fuzzy_system_fnn.data[’LP’].apply(not_mu)

fuzzy_system_fnn.data[’not_MP ’] = fuzzy_system_fnn.data[’MP’].apply(not_mu)

fuzzy_system_fnn.data[’not_HP ’] = fuzzy_system_fnn.data[’HP’].apply(not_mu)

fuzzy_system_fnn.data[’not_VHP ’] = fuzzy_system_fnn.data[’VHP’].apply(not_mu)

fuzzy_system_fnn.data[’not_VLG ’] = fuzzy_system_fnn.data[’VLG’].apply(not_mu)

fuzzy_system_fnn.data[’not_LG ’] = fuzzy_system_fnn.data[’LG’].apply(not_mu)

fuzzy_system_fnn.data[’not_MG ’] = fuzzy_system_fnn.data[’MG’].apply(not_mu)

fuzzy_system_fnn.data[’not_HG ’] = fuzzy_system_fnn.data[’HG’].apply(not_mu)

fuzzy_system_fnn.data[’not_VHG ’] = fuzzy_system_fnn.data[’VHG’].apply(not_mu)

# Define the input and output variables for the fuzzy neural network

X = fuzzy_system_fnn.data[[’VLP’, ’LP’, ’MP’, ’HP’, ’VHP’,

’VLG’, ’LG’, ’MG’, ’HG’, ’VHG’,

’not_VLP ’, ’not_LP ’, ’not_MP ’, ’not_HP ’, ’not_VHP ’,

’not_VLG ’, ’not_LG ’, ’not_MG ’, ’not_HG ’, ’not_VHG ’]]. values

y = fuzzy_system_fnn.data[[’real_VLY ’, ’real_LY ’, ’real_MY ’, ’real_HY ’, ’real_VHY ’]]. values

Definition of the fuzzy neural network

We define special functions to compute the t-norm and t-conorm for the and-neurons and or-neurons

neurons, with an input vector and a matrix of weights. These operations will be used later in the

definition of the fuzzy neurons. These operators have been tested before incorporating them in the

fuzzy neural network.

if T_NORM == ’min’:

# t-norm for the AND layer , returns a vector

t_norm_and_layer = lambda x: torch.min(x, dim =0). values

# t-norm for the OR layer , returns a matrix

t_norm_or_layer = lambda x, y: torch.min(x, y)

if T_CONORM == ’max’:

# t-conorm for the AND layer , returns a matrix

t_conorm_and_layer = lambda x, y: torch.max(x, y)

# t-conorm for the OR layer , returns a vector

t_conorm_or_layer = lambda x: torch.max(x, dim =0). values
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if T_NORM == ’product ’:

# t-norm for the AND layer , returns a vector

t_norm_and_layer = lambda x: torch.prod(x, dim=0)

# t-norm for the OR layer , returns a matrix

t_norm_or_layer = lambda x, y: torch.mul(x, y)

if T_CONORM == ’sum’:

# t-conorm for the AND layer , returns a matrix

t_conorm_and_layer = lambda x, y: x + y - torch.mul(x, y)

# sum t-conorm

t_conorm_sum = lambda x, y: x + y - torch.mul(x, y)

# t-conorm for the OR layer , returns a vector

def t_conorm_or_layer(x):

while True:

if x.shape [0] == 1:

x.reshape (-1)

break

elif x.shape [0] == 2:

x = t_conorm_sum(x[0], x[1])

x.reshape (-1)

break

else:

x = torch.cat((torch.stack(

[t_conorm_sum(x[0][i], x[1][i]) for i in range(x.shape [1])]

). reshape (1,-1), x[2:]))

return x

if T_NORM == ’lukasiewicz ’:

# lukaiewicz t-norm

t_norm_lukasiewicz = lambda x, y: torch.max(torch.zeros(x.shape), x + y - 1)

# t-norm for the AND layer , returns a vector

def t_norm_and_layer(x):

while True:

if x.shape [0] == 1:

x.reshape (-1)

break

elif x.shape [0] == 2:

x = t_norm_lukasiewicz(x[0], x[1])

x.reshape (-1)

break

else:

x = torch.cat((torch.stack(

[t_norm_lukasiewicz(x[0][i], x[1][i]) for i in range(x.shape [1])]

). reshape (1,-1), x[2:]))

return x

# t-norm for the OR layer , returns a matrix

t_norm_or_layer = lambda x, y: torch.max(torch.zeros(x.shape), x + y - 1)

if T_CONORM == ’lukasiewicz ’:

# t-conorm for the AND layer , returns a matrix

t_conorm_and_layer = lambda x, y: torch.min(torch.ones(x.shape), x + y)

# lukasiewicz t-conorm

t_conorm_lukasiewicz = lambda x, y: torch.min(torch.ones(x.shape), x + y)

# t-conorm for the OR layer , returns a vector

def t_conorm_or_layer(x):

while True:

if x.shape [0] == 1:

x.reshape (-1)

break
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elif x.shape [0] == 2:

x = t_conorm_lukasiewicz(x[0], x[1])

x.reshape (-1)

break

else:

x = torch.cat((torch.stack(

[t_conorm_lukasiewicz(x[0][i], x[1][i]) for i in range(x.shape [1])]

). reshape (1,-1), x[2:]))

return x

We now define the and-layers (layers with and-neurons) and or-layers (layers with or-neurons) that

will be used in the fuzzy neural network.

# Fix the random seed (this is to ensure the results can be reproduced)

np.random.seed (2)

torch.manual_seed (2)

class AndLayer(nn.Module ):

""" AND layer of the fuzzy neural network."""

def __init__(self , in_units , out_units ):

"""

Initialize the layer.

Args:

in_units (int): Number of inputs

out_units (int): Number of outputs

"""

super (). __init__ ()

self.weight = nn.Parameter(torch.rand((in_units , out_units )))

def forward(self , X):

"""

Forward pass of the layer.

Args:

X (torch.Tensor ): Input tensor of shape (in_units)

Returns:

torch.Tensor: Output tensor of shape (out_units)

"""

with torch.no_grad ():

# reshape X to a matrix of shape (in_units , 1) (column vector)

X = X.reshape(-1, 1)

# repeat X along columns , so that every column is equal to previous X

X = X.expand_as(self.weight)

# t_conorm of weigths and X (this gives , for each column of weights , the

# t_conorm between the input X and the column of weights)

OR_matrix = t_conorm_and_layer(X, self.weight)

# t_norm of each column of OR_matrix

AND_vector = t_norm_and_layer(OR_matrix)

return AND_vector

class OrLayer(nn.Module ):

"""OR layer of the fuzzy neural network."""

def __init__(self , in_units , out_units ):

"""

Initialize the layer.

Args:

in_units (int): Number of inputs

out_units (int): Number of outputs
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"""

super (). __init__ ()

self.weight = nn.Parameter(torch.rand((in_units , out_units )))

def forward(self , X):

"""

Forward pass of the layer.

Args:

X (torch.Tensor ): Input tensor of shape (in_units)

Returns:

torch.Tensor: Output tensor of shape (out_units)

"""

with torch.no_grad ():

# reshape X to a matrix of shape (in_units , 1) (column vector)

X = X.reshape(-1, 1)

# repeat X along columns , so that every column is equal to previous X

X = X.expand_as(self.weight)

# t_norm of weigths and X (this gives , for each column of weights , the

# t_norm between the input X and the column of weights)

AND_matrix = t_norm_or_layer(X, self.weight)

# t_conorm of each column of AND_matrix

OR_vector = t_conorm_or_layer(AND_matrix)

return OR_vector

Last, we define the fuzzy neural network, using the and-layers and or-layers defined above. The

network is specifically for the use case of the rice yield prediction shown in the text. The hyperparam-

eters (number of layers, number of neurons per layer, input and output shape, etc.) can be changed

to fit other use cases.

class FuzzyNeuralNetwork(nn.Module ):

""" Fuzzy Neural Network."""

def __init__(self):

"""

Initialize the network.

"""

super(FuzzyNeuralNetwork , self). __init__ ()

self.l1 = AndLayer (20 ,20)

self.l2 = OrLayer (20 ,10)

self.l3 = OrLayer (10 ,5)

def forward(self ,x):

"""

Forward pass of the network.

Args:

x (torch.Tensor ): Input tensor of shape (20)

Returns:

torch.Tensor: Output tensor of shape (5)

"""

out= self.l1(x)

out= self.l2(out)

out= self.l3(out)

return(out)
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Training and testing the fuzzy neural network

# Define the model

model = FuzzyNeuralNetwork ()

# Define the loss function (Mean Squared Error) and the optimizer (Adam)

loss_function = nn.MSELoss ()

optimizer = optim.Adam(model.parameters (), lr=0.1)

# Train -test split (80% training , 20% testing)

X_train , X_test= np.split(X, [int(.8 *len(X))])

y_train , y_test= np.split(y, [int(.8 *len(y))])

# Convert the data from numpy arrays to PyTorch tensors

X_train = torch.FloatTensor(X_train)

X_test = torch.FloatTensor(X_test)

y_train = torch.FloatTensor(y_train)

y_test = torch.FloatTensor(y_test)

# Save the best model for later analysis

best_mse = np.inf # initialize to infinity

best_weights = None

# Save losses for later visualization

test_losses = []

train_losses = []

# Train and test the model

n_epochs = 25 # number of epochs

for epoch in range(n_epochs ):

model.train ()

epoch_train_losses = []

# Training loop

for i in range(len(X_train )):

# take a sample

X_sample = X_train[i]

y_sample = y_train[i]

# Forward pass

y_pred = model(X_sample)

loss = loss_function(y_pred , y_sample)

# Backward pass

optimizer.zero_grad ()

loss.backward ()

# Update weights

optimizer.step()

# Save loss for later visualization

epoch_train_losses.append(float(loss))

# Testing

model.eval()

y_pred = torch.stack ([ model(X_test[i]) for i in range(X_test.shape [0])])

test_loss = float(loss_function(y_pred , y_test ))

# Save losses and best model for later analysis

mean_train_loss = np.mean(epoch_train_losses)

train_losses.append(mean_train_loss)

test_losses.append(test_loss)

if test_loss < best_mse:

best_mse = test_loss

best_weights = copy.deepcopy(model.state_dict ())

last_mse = test_loss
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last_weights = copy.deepcopy(model.state_dict ())

print(’Epoch %d/%d’ % \ (epoch+1, n_epochs ))

print(f"Train loss: {mean_train_loss :.6f}")

print(f"Test loss: {test_loss :.6f}")

Similarly to the neural network, we can plot the losses and predict the yield with either the best

model (variable best weights) or the model optimized in the last epoch (variable last weights) to

predict the yield. The weights of the model can be loaded with model.load state dict(weights),

with weights the variable containing the desired weights. The output predicted by the model is

defuzzified with fuzzy system fnn.defuzzify yield(). See the Github repository specified above

for the full code.
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